L(s) = 1 | + (−7.27 + 8.66i)2-s + (−74.4 − 31.9i)3-s + (−22.2 − 126. i)4-s + (−303. + 833. i)5-s + (818. − 412. i)6-s + (−11.0 + 62.7i)7-s + (1.25e3 + 724. i)8-s + (4.52e3 + 4.75e3i)9-s + (−5.01e3 − 8.68e3i)10-s + (9.13e3 + 2.50e4i)11-s + (−2.37e3 + 1.00e4i)12-s + (1.85e4 − 1.55e4i)13-s + (−463. − 552. i)14-s + (4.91e4 − 5.23e4i)15-s + (−1.53e4 + 5.60e3i)16-s + (−6.81e4 + 3.93e4i)17-s + ⋯ |
L(s) = 1 | + (−0.454 + 0.541i)2-s + (−0.918 − 0.394i)3-s + (−0.0868 − 0.492i)4-s + (−0.485 + 1.33i)5-s + (0.631 − 0.318i)6-s + (−0.00461 + 0.0261i)7-s + (0.306 + 0.176i)8-s + (0.689 + 0.724i)9-s + (−0.501 − 0.868i)10-s + (0.623 + 1.71i)11-s + (−0.114 + 0.486i)12-s + (0.650 − 0.545i)13-s + (−0.0120 − 0.0143i)14-s + (0.971 − 1.03i)15-s + (−0.234 + 0.0855i)16-s + (−0.816 + 0.471i)17-s + ⋯ |
Λ(s)=(=(54s/2ΓC(s)L(s)(−0.681+0.731i)Λ(9−s)
Λ(s)=(=(54s/2ΓC(s+4)L(s)(−0.681+0.731i)Λ(1−s)
Degree: |
2 |
Conductor: |
54
= 2⋅33
|
Sign: |
−0.681+0.731i
|
Analytic conductor: |
21.9984 |
Root analytic conductor: |
4.69024 |
Motivic weight: |
8 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ54(11,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 54, ( :4), −0.681+0.731i)
|
Particular Values
L(29) |
≈ |
0.134806−0.310011i |
L(21) |
≈ |
0.134806−0.310011i |
L(5) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(7.27−8.66i)T |
| 3 | 1+(74.4+31.9i)T |
good | 5 | 1+(303.−833.i)T+(−2.99e5−2.51e5i)T2 |
| 7 | 1+(11.0−62.7i)T+(−5.41e6−1.97e6i)T2 |
| 11 | 1+(−9.13e3−2.50e4i)T+(−1.64e8+1.37e8i)T2 |
| 13 | 1+(−1.85e4+1.55e4i)T+(1.41e8−8.03e8i)T2 |
| 17 | 1+(6.81e4−3.93e4i)T+(3.48e9−6.04e9i)T2 |
| 19 | 1+(7.69e4−1.33e5i)T+(−8.49e9−1.47e10i)T2 |
| 23 | 1+(5.40e4−9.53e3i)T+(7.35e10−2.67e10i)T2 |
| 29 | 1+(1.55e4−1.84e4i)T+(−8.68e10−4.92e11i)T2 |
| 31 | 1+(2.84e5+1.61e6i)T+(−8.01e11+2.91e11i)T2 |
| 37 | 1+(−5.91e5−1.02e6i)T+(−1.75e12+3.04e12i)T2 |
| 41 | 1+(−6.08e4−7.25e4i)T+(−1.38e12+7.86e12i)T2 |
| 43 | 1+(2.97e6−1.08e6i)T+(8.95e12−7.51e12i)T2 |
| 47 | 1+(5.66e6+9.99e5i)T+(2.23e13+8.14e12i)T2 |
| 53 | 1+7.83e6iT−6.22e13T2 |
| 59 | 1+(6.93e6−1.90e7i)T+(−1.12e14−9.43e13i)T2 |
| 61 | 1+(−1.42e5+8.06e5i)T+(−1.80e14−6.55e13i)T2 |
| 67 | 1+(9.66e6−8.11e6i)T+(7.05e13−3.99e14i)T2 |
| 71 | 1+(−3.63e7+2.09e7i)T+(3.22e14−5.59e14i)T2 |
| 73 | 1+(8.83e6−1.53e7i)T+(−4.03e14−6.98e14i)T2 |
| 79 | 1+(3.43e7+2.88e7i)T+(2.63e14+1.49e15i)T2 |
| 83 | 1+(−4.76e7+5.67e7i)T+(−3.91e14−2.21e15i)T2 |
| 89 | 1+(−3.61e7−2.08e7i)T+(1.96e15+3.40e15i)T2 |
| 97 | 1+(5.20e7−1.89e7i)T+(6.00e15−5.03e15i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−14.82436536019374369458988981074, −13.16372772139312463138006678858, −11.85583991857964082672043466852, −10.80488921783851465393497293736, −9.918648637296999513417484302853, −7.920258952094509600995421562661, −6.92642098978640571805927976962, −6.10638679797207151165062898788, −4.22101104096222851679562106197, −1.85076288852598622546265636855,
0.18405185792382956737479655291, 1.13193427113882348198192896499, 3.75936376892411747961505169905, 4.94305027211996878129861219755, 6.53869086288501055683229102861, 8.585476618130151297657613328505, 9.149174509344524948012225118259, 10.92043719664393673942089240707, 11.52315687226221980210961285274, 12.58244218387580028665557484845