L(s) = 1 | + (0.909 − 1.08i)2-s + (1.54 − 2.56i)3-s + (−0.347 − 1.96i)4-s + (−1.07 + 2.96i)5-s + (−1.37 − 4.01i)6-s + (−0.250 + 1.42i)7-s + (−2.44 − 1.41i)8-s + (−4.20 − 7.95i)9-s + (2.23 + 3.86i)10-s + (6.39 + 17.5i)11-s + (−5.59 − 2.15i)12-s + (10.5 − 8.88i)13-s + (1.31 + 1.56i)14-s + (5.94 + 7.36i)15-s + (−3.75 + 1.36i)16-s + (−16.3 + 9.44i)17-s + ⋯ |
L(s) = 1 | + (0.454 − 0.541i)2-s + (0.516 − 0.856i)3-s + (−0.0868 − 0.492i)4-s + (−0.215 + 0.592i)5-s + (−0.229 − 0.668i)6-s + (−0.0357 + 0.202i)7-s + (−0.306 − 0.176i)8-s + (−0.466 − 0.884i)9-s + (0.223 + 0.386i)10-s + (0.581 + 1.59i)11-s + (−0.466 − 0.179i)12-s + (0.814 − 0.683i)13-s + (0.0936 + 0.111i)14-s + (0.396 + 0.490i)15-s + (−0.234 + 0.0855i)16-s + (−0.961 + 0.555i)17-s + ⋯ |
Λ(s)=(=(54s/2ΓC(s)L(s)(0.397+0.917i)Λ(3−s)
Λ(s)=(=(54s/2ΓC(s+1)L(s)(0.397+0.917i)Λ(1−s)
Degree: |
2 |
Conductor: |
54
= 2⋅33
|
Sign: |
0.397+0.917i
|
Analytic conductor: |
1.47139 |
Root analytic conductor: |
1.21301 |
Motivic weight: |
2 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ54(11,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 54, ( :1), 0.397+0.917i)
|
Particular Values
L(23) |
≈ |
1.29376−0.849561i |
L(21) |
≈ |
1.29376−0.849561i |
L(2) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−0.909+1.08i)T |
| 3 | 1+(−1.54+2.56i)T |
good | 5 | 1+(1.07−2.96i)T+(−19.1−16.0i)T2 |
| 7 | 1+(0.250−1.42i)T+(−46.0−16.7i)T2 |
| 11 | 1+(−6.39−17.5i)T+(−92.6+77.7i)T2 |
| 13 | 1+(−10.5+8.88i)T+(29.3−166.i)T2 |
| 17 | 1+(16.3−9.44i)T+(144.5−250.i)T2 |
| 19 | 1+(1.14−1.98i)T+(−180.5−312.i)T2 |
| 23 | 1+(26.5−4.68i)T+(497.−180.i)T2 |
| 29 | 1+(−17.2+20.5i)T+(−146.−828.i)T2 |
| 31 | 1+(4.55+25.8i)T+(−903.+328.i)T2 |
| 37 | 1+(33.8+58.6i)T+(−684.5+1.18e3i)T2 |
| 41 | 1+(13.0+15.5i)T+(−291.+1.65e3i)T2 |
| 43 | 1+(32.2−11.7i)T+(1.41e3−1.18e3i)T2 |
| 47 | 1+(−46.4−8.19i)T+(2.07e3+755.i)T2 |
| 53 | 1+49.0iT−2.80e3T2 |
| 59 | 1+(13.0−35.9i)T+(−2.66e3−2.23e3i)T2 |
| 61 | 1+(9.55−54.2i)T+(−3.49e3−1.27e3i)T2 |
| 67 | 1+(95.2−79.9i)T+(779.−4.42e3i)T2 |
| 71 | 1+(−10.4+6.04i)T+(2.52e3−4.36e3i)T2 |
| 73 | 1+(−37.3+64.7i)T+(−2.66e3−4.61e3i)T2 |
| 79 | 1+(−74.8−62.7i)T+(1.08e3+6.14e3i)T2 |
| 83 | 1+(−81.1+96.6i)T+(−1.19e3−6.78e3i)T2 |
| 89 | 1+(−9.23−5.33i)T+(3.96e3+6.85e3i)T2 |
| 97 | 1+(−145.+53.0i)T+(7.20e3−6.04e3i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−14.80493152420548777928989870828, −13.64901859511739893711104592282, −12.64936688495860256201038711321, −11.76204231759163151584847428070, −10.38337485194511327614197068157, −8.942280349696096109327819314063, −7.40549408252328593977674806805, −6.16748195500619952805040235798, −3.89381276017032085547010350794, −2.11540003380967289045356349542,
3.52243750840087464983666773797, 4.78639621197895058270507874891, 6.42521568881088734539860975734, 8.419559879556092681782845778218, 8.936488750296122830231855640717, 10.73322793784886599874390618335, 11.90882090216400100612005541930, 13.70456419201752749617229554513, 13.97180324320415481633378282619, 15.51237182317353032532532851263