L(s) = 1 | + (−0.909 + 1.08i)2-s + (2.80 − 1.05i)3-s + (−0.347 − 1.96i)4-s + (2.86 − 7.86i)5-s + (−1.41 + 4.00i)6-s + (−1.95 + 11.0i)7-s + (2.44 + 1.41i)8-s + (6.77 − 5.92i)9-s + (5.92 + 10.2i)10-s + (0.538 + 1.47i)11-s + (−3.05 − 5.16i)12-s + (−6.82 + 5.72i)13-s + (−10.2 − 12.1i)14-s + (−0.256 − 25.1i)15-s + (−3.75 + 1.36i)16-s + (−16.9 + 9.80i)17-s + ⋯ |
L(s) = 1 | + (−0.454 + 0.541i)2-s + (0.936 − 0.351i)3-s + (−0.0868 − 0.492i)4-s + (0.572 − 1.57i)5-s + (−0.235 + 0.666i)6-s + (−0.278 + 1.58i)7-s + (0.306 + 0.176i)8-s + (0.752 − 0.658i)9-s + (0.592 + 1.02i)10-s + (0.0489 + 0.134i)11-s + (−0.254 − 0.430i)12-s + (−0.524 + 0.440i)13-s + (−0.729 − 0.869i)14-s + (−0.0170 − 1.67i)15-s + (−0.234 + 0.0855i)16-s + (−0.999 + 0.576i)17-s + ⋯ |
Λ(s)=(=(54s/2ΓC(s)L(s)(0.999+0.0275i)Λ(3−s)
Λ(s)=(=(54s/2ΓC(s+1)L(s)(0.999+0.0275i)Λ(1−s)
Degree: |
2 |
Conductor: |
54
= 2⋅33
|
Sign: |
0.999+0.0275i
|
Analytic conductor: |
1.47139 |
Root analytic conductor: |
1.21301 |
Motivic weight: |
2 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ54(11,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 54, ( :1), 0.999+0.0275i)
|
Particular Values
L(23) |
≈ |
1.23893−0.0170708i |
L(21) |
≈ |
1.23893−0.0170708i |
L(2) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.909−1.08i)T |
| 3 | 1+(−2.80+1.05i)T |
good | 5 | 1+(−2.86+7.86i)T+(−19.1−16.0i)T2 |
| 7 | 1+(1.95−11.0i)T+(−46.0−16.7i)T2 |
| 11 | 1+(−0.538−1.47i)T+(−92.6+77.7i)T2 |
| 13 | 1+(6.82−5.72i)T+(29.3−166.i)T2 |
| 17 | 1+(16.9−9.80i)T+(144.5−250.i)T2 |
| 19 | 1+(−4.86+8.42i)T+(−180.5−312.i)T2 |
| 23 | 1+(13.8−2.43i)T+(497.−180.i)T2 |
| 29 | 1+(−7.05+8.40i)T+(−146.−828.i)T2 |
| 31 | 1+(−8.04−45.6i)T+(−903.+328.i)T2 |
| 37 | 1+(−7.89−13.6i)T+(−684.5+1.18e3i)T2 |
| 41 | 1+(6.59+7.86i)T+(−291.+1.65e3i)T2 |
| 43 | 1+(−24.6+8.96i)T+(1.41e3−1.18e3i)T2 |
| 47 | 1+(42.2+7.45i)T+(2.07e3+755.i)T2 |
| 53 | 1−41.5iT−2.80e3T2 |
| 59 | 1+(−20.6+56.8i)T+(−2.66e3−2.23e3i)T2 |
| 61 | 1+(−13.2+75.3i)T+(−3.49e3−1.27e3i)T2 |
| 67 | 1+(−2.09+1.75i)T+(779.−4.42e3i)T2 |
| 71 | 1+(−65.1+37.6i)T+(2.52e3−4.36e3i)T2 |
| 73 | 1+(−33.0+57.2i)T+(−2.66e3−4.61e3i)T2 |
| 79 | 1+(−38.8−32.5i)T+(1.08e3+6.14e3i)T2 |
| 83 | 1+(−21.4+25.5i)T+(−1.19e3−6.78e3i)T2 |
| 89 | 1+(75.2+43.4i)T+(3.96e3+6.85e3i)T2 |
| 97 | 1+(−132.+48.2i)T+(7.20e3−6.04e3i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−15.34727899979336858470042607137, −14.02470376208640458952901207506, −12.89269698857207770685129155601, −12.12121394989362781938603140809, −9.638380765067485238328347486290, −8.980459455829226804845130196739, −8.276768219358936406297735997951, −6.39669096328354072461246350859, −4.92466492004446814686200434021, −2.01037972240035355407577531342,
2.60090867671788618794889814631, 3.93046818787463394335535337215, 6.84862986048166972930601249553, 7.78219801954984622527198079300, 9.665271963985792970321897803697, 10.26303971772962283868866827106, 11.13692501951564503005521558647, 13.25368964158125296624844262834, 13.94185056886573556779850959125, 14.84968456408918991132237872304