Properties

Label 2-539-1.1-c3-0-95
Degree $2$
Conductor $539$
Sign $-1$
Analytic cond. $31.8020$
Root an. cond. $5.63932$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3·2-s + 3·3-s + 4-s + 2·5-s + 9·6-s − 21·8-s − 18·9-s + 6·10-s + 11·11-s + 3·12-s − 73·13-s + 6·15-s − 71·16-s + 62·17-s − 54·18-s − 84·19-s + 2·20-s + 33·22-s + 124·23-s − 63·24-s − 121·25-s − 219·26-s − 135·27-s − 203·29-s + 18·30-s − 224·31-s − 45·32-s + ⋯
L(s)  = 1  + 1.06·2-s + 0.577·3-s + 1/8·4-s + 0.178·5-s + 0.612·6-s − 0.928·8-s − 2/3·9-s + 0.189·10-s + 0.301·11-s + 0.0721·12-s − 1.55·13-s + 0.103·15-s − 1.10·16-s + 0.884·17-s − 0.707·18-s − 1.01·19-s + 0.0223·20-s + 0.319·22-s + 1.12·23-s − 0.535·24-s − 0.967·25-s − 1.65·26-s − 0.962·27-s − 1.29·29-s + 0.109·30-s − 1.29·31-s − 0.248·32-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 539 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 539 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(539\)    =    \(7^{2} \cdot 11\)
Sign: $-1$
Analytic conductor: \(31.8020\)
Root analytic conductor: \(5.63932\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 539,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad7 \( 1 \)
11 \( 1 - p T \)
good2 \( 1 - 3 T + p^{3} T^{2} \)
3 \( 1 - p T + p^{3} T^{2} \)
5 \( 1 - 2 T + p^{3} T^{2} \)
13 \( 1 + 73 T + p^{3} T^{2} \)
17 \( 1 - 62 T + p^{3} T^{2} \)
19 \( 1 + 84 T + p^{3} T^{2} \)
23 \( 1 - 124 T + p^{3} T^{2} \)
29 \( 1 + 7 p T + p^{3} T^{2} \)
31 \( 1 + 224 T + p^{3} T^{2} \)
37 \( 1 - 412 T + p^{3} T^{2} \)
41 \( 1 + 176 T + p^{3} T^{2} \)
43 \( 1 - 400 T + p^{3} T^{2} \)
47 \( 1 + 586 T + p^{3} T^{2} \)
53 \( 1 + 234 T + p^{3} T^{2} \)
59 \( 1 - 9 p T + p^{3} T^{2} \)
61 \( 1 - 367 T + p^{3} T^{2} \)
67 \( 1 - 105 T + p^{3} T^{2} \)
71 \( 1 + 878 T + p^{3} T^{2} \)
73 \( 1 + 236 T + p^{3} T^{2} \)
79 \( 1 - 351 T + p^{3} T^{2} \)
83 \( 1 + 342 T + p^{3} T^{2} \)
89 \( 1 - 366 T + p^{3} T^{2} \)
97 \( 1 + 1001 T + p^{3} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.683676141001956187553820881261, −9.257023987640682236840111945280, −8.158950582235844145132144534358, −7.18741480473236826520931941448, −5.94193576193454733088078320896, −5.23898679958221832449770463872, −4.15691274875767352179008112046, −3.16299565262697374025410037027, −2.20656561849245156673705732316, 0, 2.20656561849245156673705732316, 3.16299565262697374025410037027, 4.15691274875767352179008112046, 5.23898679958221832449770463872, 5.94193576193454733088078320896, 7.18741480473236826520931941448, 8.158950582235844145132144534358, 9.257023987640682236840111945280, 9.683676141001956187553820881261

Graph of the $Z$-function along the critical line