L(s) = 1 | + (−0.366 + 0.930i)2-s + (−0.0417 + 0.890i)3-s + (−0.731 − 0.681i)4-s + (−0.816 + 0.462i)5-s + (−0.813 − 0.365i)6-s + (2.09 − 1.86i)7-s + (0.902 − 0.430i)8-s + (2.19 + 0.206i)9-s + (−0.131 − 0.929i)10-s + (0.276 + 2.34i)11-s + (0.637 − 0.623i)12-s + (−2.04 + 0.288i)13-s + (0.967 + 2.63i)14-s + (−0.378 − 0.746i)15-s + (0.0702 + 0.997i)16-s + (7.35 + 0.866i)17-s + ⋯ |
L(s) = 1 | + (−0.259 + 0.657i)2-s + (−0.0241 + 0.514i)3-s + (−0.365 − 0.340i)4-s + (−0.365 + 0.207i)5-s + (−0.332 − 0.149i)6-s + (0.793 − 0.705i)7-s + (0.319 − 0.152i)8-s + (0.731 + 0.0688i)9-s + (−0.0416 − 0.293i)10-s + (0.0832 + 0.707i)11-s + (0.184 − 0.179i)12-s + (−0.565 + 0.0801i)13-s + (0.258 + 0.704i)14-s + (−0.0976 − 0.192i)15-s + (0.0175 + 0.249i)16-s + (1.78 + 0.210i)17-s + ⋯ |
Λ(s)=(=(538s/2ΓC(s)L(s)(−0.00927−0.999i)Λ(2−s)
Λ(s)=(=(538s/2ΓC(s+1/2)L(s)(−0.00927−0.999i)Λ(1−s)
Degree: |
2 |
Conductor: |
538
= 2⋅269
|
Sign: |
−0.00927−0.999i
|
Analytic conductor: |
4.29595 |
Root analytic conductor: |
2.07266 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ538(491,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 538, ( :1/2), −0.00927−0.999i)
|
Particular Values
L(1) |
≈ |
0.917334+0.925884i |
L(21) |
≈ |
0.917334+0.925884i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.366−0.930i)T |
| 269 | 1+(2.62+16.1i)T |
good | 3 | 1+(0.0417−0.890i)T+(−2.98−0.280i)T2 |
| 5 | 1+(0.816−0.462i)T+(2.56−4.29i)T2 |
| 7 | 1+(−2.09+1.86i)T+(0.818−6.95i)T2 |
| 11 | 1+(−0.276−2.34i)T+(−10.6+2.55i)T2 |
| 13 | 1+(2.04−0.288i)T+(12.4−3.60i)T2 |
| 17 | 1+(−7.35−0.866i)T+(16.5+3.94i)T2 |
| 19 | 1+(1.28+0.539i)T+(13.2+13.5i)T2 |
| 23 | 1+(−2.66−0.125i)T+(22.8+2.15i)T2 |
| 29 | 1+(−1.03+0.619i)T+(13.7−25.5i)T2 |
| 31 | 1+(−0.195−0.818i)T+(−27.6+14.0i)T2 |
| 37 | 1+(5.44−8.20i)T+(−14.3−34.0i)T2 |
| 41 | 1+(−1.77+0.697i)T+(29.9−27.9i)T2 |
| 43 | 1+(−1.29−2.16i)T+(−20.3+37.8i)T2 |
| 47 | 1+(−1.24+0.782i)T+(20.2−42.4i)T2 |
| 53 | 1+(3.42+10.8i)T+(−43.4+30.3i)T2 |
| 59 | 1+(−0.661+0.709i)T+(−4.14−58.8i)T2 |
| 61 | 1+(−0.909−4.24i)T+(−55.6+24.9i)T2 |
| 67 | 1+(−3.96+3.69i)T+(4.70−66.8i)T2 |
| 71 | 1+(1.25+0.459i)T+(54.1+45.9i)T2 |
| 73 | 1+(−3.42+2.90i)T+(11.9−72.0i)T2 |
| 79 | 1+(−2.12+8.06i)T+(−68.7−38.9i)T2 |
| 83 | 1+(0.990−5.21i)T+(−77.2−30.4i)T2 |
| 89 | 1+(−10.9−3.73i)T+(70.5+54.3i)T2 |
| 97 | 1+(1.67−7.84i)T+(−88.4−39.7i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.75069386787736362223749370857, −10.08100722470743349525328970525, −9.435343586336350996806128947568, −8.099012940554851562965158923274, −7.50220949598917778561735167131, −6.79184313475631145553889575445, −5.26948586791160770911439055853, −4.58622623929930809906604809543, −3.56287609695316158560363001934, −1.44942318490895498146264575126,
1.00865754713979383021546709577, 2.30736410498210994252815403602, 3.66219818776785355327213115827, 4.86988297559823107637271435164, 5.86983682919163999223535340060, 7.32665333002017004620038189742, 7.970972749075844979998832021201, 8.793928122158753940493026242306, 9.785154564368910236982901260960, 10.65770825685838176955161212175