L(s) = 1 | + (−0.186 − 0.982i)2-s + (−1.94 + 0.0455i)3-s + (−0.930 + 0.366i)4-s + (0.163 − 0.619i)5-s + (0.406 + 1.89i)6-s + (0.479 + 1.06i)7-s + (0.533 + 0.845i)8-s + (0.773 − 0.0363i)9-s + (−0.638 − 0.0449i)10-s + (−1.70 − 1.91i)11-s + (1.79 − 0.754i)12-s + (−0.242 + 3.44i)13-s + (0.959 − 0.669i)14-s + (−0.288 + 1.20i)15-s + (0.731 − 0.681i)16-s + (1.22 + 1.08i)17-s + ⋯ |
L(s) = 1 | + (−0.131 − 0.694i)2-s + (−1.12 + 0.0262i)3-s + (−0.465 + 0.183i)4-s + (0.0730 − 0.276i)5-s + (0.166 + 0.775i)6-s + (0.181 + 0.403i)7-s + (0.188 + 0.299i)8-s + (0.257 − 0.0121i)9-s + (−0.201 − 0.0142i)10-s + (−0.512 − 0.576i)11-s + (0.516 − 0.217i)12-s + (−0.0673 + 0.955i)13-s + (0.256 − 0.178i)14-s + (−0.0746 + 0.312i)15-s + (0.182 − 0.170i)16-s + (0.296 + 0.263i)17-s + ⋯ |
Λ(s)=(=(538s/2ΓC(s)L(s)(0.957+0.289i)Λ(2−s)
Λ(s)=(=(538s/2ΓC(s+1/2)L(s)(0.957+0.289i)Λ(1−s)
Degree: |
2 |
Conductor: |
538
= 2⋅269
|
Sign: |
0.957+0.289i
|
Analytic conductor: |
4.29595 |
Root analytic conductor: |
2.07266 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ538(191,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 538, ( :1/2), 0.957+0.289i)
|
Particular Values
L(1) |
≈ |
0.811589−0.119934i |
L(21) |
≈ |
0.811589−0.119934i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.186+0.982i)T |
| 269 | 1+(−15.6−4.98i)T |
good | 3 | 1+(1.94−0.0455i)T+(2.99−0.140i)T2 |
| 5 | 1+(−0.163+0.619i)T+(−4.34−2.46i)T2 |
| 7 | 1+(−0.479−1.06i)T+(−4.65+5.23i)T2 |
| 11 | 1+(1.70+1.91i)T+(−1.28+10.9i)T2 |
| 13 | 1+(0.242−3.44i)T+(−12.8−1.82i)T2 |
| 17 | 1+(−1.22−1.08i)T+(1.98+16.8i)T2 |
| 19 | 1+(−6.19−4.11i)T+(7.37+17.5i)T2 |
| 23 | 1+(0.138+5.89i)T+(−22.9+1.07i)T2 |
| 29 | 1+(−1.20−2.12i)T+(−14.8+24.8i)T2 |
| 31 | 1+(2.89+0.341i)T+(30.1+7.20i)T2 |
| 37 | 1+(−1.51+2.82i)T+(−20.4−30.8i)T2 |
| 41 | 1+(−11.2−2.12i)T+(38.1+15.0i)T2 |
| 43 | 1+(−7.41+4.20i)T+(22.0−36.8i)T2 |
| 47 | 1+(9.33+2.69i)T+(39.7+25.0i)T2 |
| 53 | 1+(−5.62−7.66i)T+(−15.9+50.5i)T2 |
| 59 | 1+(1.54+3.93i)T+(−43.1+40.2i)T2 |
| 61 | 1+(−6.53−8.08i)T+(−12.7+59.6i)T2 |
| 67 | 1+(0.0617+0.0243i)T+(49.0+45.6i)T2 |
| 71 | 1+(7.43−10.6i)T+(−24.4−66.6i)T2 |
| 73 | 1+(4.90−13.3i)T+(−55.6−47.2i)T2 |
| 79 | 1+(−2.97−2.28i)T+(20.1+76.3i)T2 |
| 83 | 1+(−0.981−10.4i)T+(−81.5+15.4i)T2 |
| 89 | 1+(0.668+4.03i)T+(−84.2+28.6i)T2 |
| 97 | 1+(11.0−13.6i)T+(−20.3−94.8i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.94470526808441439236302295445, −10.14967981370806264630448985955, −9.123920947763277987584316737342, −8.337632388386314407588475052079, −7.11808393723636212379943792443, −5.82114439277700761041136410330, −5.29612287501830719930034622827, −4.13429556675201460568855886441, −2.68159063899332972316948647672, −1.04528109672278420231427349826,
0.77331662405294231027607731925, 3.02826988913102483369346772415, 4.70536547554852999946689519262, 5.37147062608637782569266497739, 6.19900095753597436406807932682, 7.32566097307051639002132954641, 7.75513477546352024365714986509, 9.191232079546174985222403106811, 10.05706286967337456800362296853, 10.85014649044262985674598691880