L(s) = 1 | + (0.186 + 0.982i)2-s + (−2.89 + 0.0679i)3-s + (−0.930 + 0.366i)4-s + (0.352 − 1.33i)5-s + (−0.607 − 2.83i)6-s + (1.01 + 2.26i)7-s + (−0.533 − 0.845i)8-s + (5.39 − 0.253i)9-s + (1.37 + 0.0971i)10-s + (−2.76 − 3.10i)11-s + (2.67 − 1.12i)12-s + (0.287 − 4.07i)13-s + (−2.03 + 1.42i)14-s + (−0.930 + 3.89i)15-s + (0.731 − 0.681i)16-s + (4.51 + 4.01i)17-s + ⋯ |
L(s) = 1 | + (0.131 + 0.694i)2-s + (−1.67 + 0.0392i)3-s + (−0.465 + 0.183i)4-s + (0.157 − 0.597i)5-s + (−0.247 − 1.15i)6-s + (0.384 + 0.856i)7-s + (−0.188 − 0.299i)8-s + (1.79 − 0.0843i)9-s + (0.436 + 0.0307i)10-s + (−0.832 − 0.935i)11-s + (0.771 − 0.324i)12-s + (0.0796 − 1.13i)13-s + (−0.544 + 0.379i)14-s + (−0.240 + 1.00i)15-s + (0.182 − 0.170i)16-s + (1.09 + 0.973i)17-s + ⋯ |
Λ(s)=(=(538s/2ΓC(s)L(s)(0.223−0.974i)Λ(2−s)
Λ(s)=(=(538s/2ΓC(s+1/2)L(s)(0.223−0.974i)Λ(1−s)
Degree: |
2 |
Conductor: |
538
= 2⋅269
|
Sign: |
0.223−0.974i
|
Analytic conductor: |
4.29595 |
Root analytic conductor: |
2.07266 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ538(191,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 538, ( :1/2), 0.223−0.974i)
|
Particular Values
L(1) |
≈ |
0.643472+0.512662i |
L(21) |
≈ |
0.643472+0.512662i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−0.186−0.982i)T |
| 269 | 1+(3.91−15.9i)T |
good | 3 | 1+(2.89−0.0679i)T+(2.99−0.140i)T2 |
| 5 | 1+(−0.352+1.33i)T+(−4.34−2.46i)T2 |
| 7 | 1+(−1.01−2.26i)T+(−4.65+5.23i)T2 |
| 11 | 1+(2.76+3.10i)T+(−1.28+10.9i)T2 |
| 13 | 1+(−0.287+4.07i)T+(−12.8−1.82i)T2 |
| 17 | 1+(−4.51−4.01i)T+(1.98+16.8i)T2 |
| 19 | 1+(−1.36−0.905i)T+(7.37+17.5i)T2 |
| 23 | 1+(−0.169−7.21i)T+(−22.9+1.07i)T2 |
| 29 | 1+(−4.50−7.94i)T+(−14.8+24.8i)T2 |
| 31 | 1+(9.49+1.11i)T+(30.1+7.20i)T2 |
| 37 | 1+(3.22−6.00i)T+(−20.4−30.8i)T2 |
| 41 | 1+(−2.25−0.428i)T+(38.1+15.0i)T2 |
| 43 | 1+(−9.34+5.29i)T+(22.0−36.8i)T2 |
| 47 | 1+(−12.5−3.62i)T+(39.7+25.0i)T2 |
| 53 | 1+(6.57+8.96i)T+(−15.9+50.5i)T2 |
| 59 | 1+(−1.00−2.56i)T+(−43.1+40.2i)T2 |
| 61 | 1+(−4.14−5.12i)T+(−12.7+59.6i)T2 |
| 67 | 1+(−1.35−0.533i)T+(49.0+45.6i)T2 |
| 71 | 1+(2.03−2.91i)T+(−24.4−66.6i)T2 |
| 73 | 1+(−5.00+13.6i)T+(−55.6−47.2i)T2 |
| 79 | 1+(−4.33−3.33i)T+(20.1+76.3i)T2 |
| 83 | 1+(−0.720−7.65i)T+(−81.5+15.4i)T2 |
| 89 | 1+(−0.527−3.18i)T+(−84.2+28.6i)T2 |
| 97 | 1+(−4.61+5.71i)T+(−20.3−94.8i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.92626741333792661963587262641, −10.41067497707184099797885914283, −9.147749261117213314901354018199, −8.202007268974027237538878902686, −7.32681399955157112602132420158, −5.93077585816966600062422688497, −5.40920902521538221353241333663, −5.22564642929301767950024890015, −3.47603948128307781128832311765, −1.08139959235657882790868148349,
0.74393771154463259705902975382, 2.38342015592441755923376098216, 4.21370202929193803151271595231, 4.85222356176392932884965040297, 5.87593438799176735092848974465, 6.96786118343972421841294489646, 7.54980812644120932333891125549, 9.326922402531362678439619267234, 10.26983168894997568566815956092, 10.70970275598349266916517189725