L(s) = 1 | + (−0.186 − 0.982i)2-s + (0.411 − 0.00964i)3-s + (−0.930 + 0.366i)4-s + (0.415 − 1.57i)5-s + (−0.0862 − 0.402i)6-s + (−0.208 − 0.464i)7-s + (0.533 + 0.845i)8-s + (−2.82 + 0.132i)9-s + (−1.62 − 0.114i)10-s + (−0.181 − 0.203i)11-s + (−0.379 + 0.159i)12-s + (0.295 − 4.19i)13-s + (−0.417 + 0.291i)14-s + (0.155 − 0.652i)15-s + (0.731 − 0.681i)16-s + (−2.44 − 2.17i)17-s + ⋯ |
L(s) = 1 | + (−0.131 − 0.694i)2-s + (0.237 − 0.00557i)3-s + (−0.465 + 0.183i)4-s + (0.185 − 0.704i)5-s + (−0.0351 − 0.164i)6-s + (−0.0787 − 0.175i)7-s + (0.188 + 0.299i)8-s + (−0.942 + 0.0442i)9-s + (−0.514 − 0.0362i)10-s + (−0.0546 − 0.0614i)11-s + (−0.109 + 0.0461i)12-s + (0.0819 − 1.16i)13-s + (−0.111 + 0.0778i)14-s + (0.0402 − 0.168i)15-s + (0.182 − 0.170i)16-s + (−0.593 − 0.527i)17-s + ⋯ |
Λ(s)=(=(538s/2ΓC(s)L(s)(−0.904+0.427i)Λ(2−s)
Λ(s)=(=(538s/2ΓC(s+1/2)L(s)(−0.904+0.427i)Λ(1−s)
Degree: |
2 |
Conductor: |
538
= 2⋅269
|
Sign: |
−0.904+0.427i
|
Analytic conductor: |
4.29595 |
Root analytic conductor: |
2.07266 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ538(191,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 538, ( :1/2), −0.904+0.427i)
|
Particular Values
L(1) |
≈ |
0.217824−0.971037i |
L(21) |
≈ |
0.217824−0.971037i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.186+0.982i)T |
| 269 | 1+(14.9−6.77i)T |
good | 3 | 1+(−0.411+0.00964i)T+(2.99−0.140i)T2 |
| 5 | 1+(−0.415+1.57i)T+(−4.34−2.46i)T2 |
| 7 | 1+(0.208+0.464i)T+(−4.65+5.23i)T2 |
| 11 | 1+(0.181+0.203i)T+(−1.28+10.9i)T2 |
| 13 | 1+(−0.295+4.19i)T+(−12.8−1.82i)T2 |
| 17 | 1+(2.44+2.17i)T+(1.98+16.8i)T2 |
| 19 | 1+(2.59+1.72i)T+(7.37+17.5i)T2 |
| 23 | 1+(0.141+6.02i)T+(−22.9+1.07i)T2 |
| 29 | 1+(−3.87−6.83i)T+(−14.8+24.8i)T2 |
| 31 | 1+(4.64+0.547i)T+(30.1+7.20i)T2 |
| 37 | 1+(−3.47+6.47i)T+(−20.4−30.8i)T2 |
| 41 | 1+(2.28+0.434i)T+(38.1+15.0i)T2 |
| 43 | 1+(3.06−1.74i)T+(22.0−36.8i)T2 |
| 47 | 1+(3.54+1.02i)T+(39.7+25.0i)T2 |
| 53 | 1+(2.96+4.04i)T+(−15.9+50.5i)T2 |
| 59 | 1+(−4.59−11.6i)T+(−43.1+40.2i)T2 |
| 61 | 1+(6.85+8.47i)T+(−12.7+59.6i)T2 |
| 67 | 1+(−6.35−2.50i)T+(49.0+45.6i)T2 |
| 71 | 1+(−3.21+4.60i)T+(−24.4−66.6i)T2 |
| 73 | 1+(−0.0380+0.103i)T+(−55.6−47.2i)T2 |
| 79 | 1+(−11.4−8.83i)T+(20.1+76.3i)T2 |
| 83 | 1+(−0.934−9.94i)T+(−81.5+15.4i)T2 |
| 89 | 1+(−2.53−15.2i)T+(−84.2+28.6i)T2 |
| 97 | 1+(−6.09+7.53i)T+(−20.3−94.8i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.65442932319714107479884890314, −9.487355071993917201366428699410, −8.698422045191316289539922249008, −8.207039111721460865732260308444, −6.84763157147800633758048687282, −5.52916907296430524483392026978, −4.73007521657750157799894401335, −3.36261983895167198832315924409, −2.34315022262253750290728494954, −0.56903264891795374606393689674,
2.11637069879361549567020338768, 3.47140303092021573753283060279, 4.69519590167467681597091296977, 6.04718611496171052842888726353, 6.49459253890644687373749002685, 7.62602485829648389048484438256, 8.536520985806146910612140746538, 9.255779209490577090170533746453, 10.18326365222849336576306552073, 11.17586498200469795656764898161