L(s) = 1 | + (0.186 + 0.982i)2-s + (0.0181 − 0.000425i)3-s + (−0.930 + 0.366i)4-s + (−0.713 + 2.70i)5-s + (0.00380 + 0.0177i)6-s + (1.80 + 4.02i)7-s + (−0.533 − 0.845i)8-s + (−2.99 + 0.140i)9-s + (−2.79 − 0.196i)10-s + (−2.74 − 3.08i)11-s + (−0.0167 + 0.00704i)12-s + (0.108 − 1.54i)13-s + (−3.61 + 2.52i)14-s + (−0.0118 + 0.0494i)15-s + (0.731 − 0.681i)16-s + (−2.87 − 2.55i)17-s + ⋯ |
L(s) = 1 | + (0.131 + 0.694i)2-s + (0.0104 − 0.000245i)3-s + (−0.465 + 0.183i)4-s + (−0.319 + 1.21i)5-s + (0.00155 + 0.00724i)6-s + (0.682 + 1.51i)7-s + (−0.188 − 0.299i)8-s + (−0.998 + 0.0468i)9-s + (−0.882 − 0.0622i)10-s + (−0.827 − 0.930i)11-s + (−0.00483 + 0.00203i)12-s + (0.0301 − 0.428i)13-s + (−0.965 + 0.674i)14-s + (−0.00304 + 0.0127i)15-s + (0.182 − 0.170i)16-s + (−0.697 − 0.620i)17-s + ⋯ |
Λ(s)=(=(538s/2ΓC(s)L(s)(−0.996+0.0877i)Λ(2−s)
Λ(s)=(=(538s/2ΓC(s+1/2)L(s)(−0.996+0.0877i)Λ(1−s)
Degree: |
2 |
Conductor: |
538
= 2⋅269
|
Sign: |
−0.996+0.0877i
|
Analytic conductor: |
4.29595 |
Root analytic conductor: |
2.07266 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ538(191,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 538, ( :1/2), −0.996+0.0877i)
|
Particular Values
L(1) |
≈ |
0.0425125−0.967594i |
L(21) |
≈ |
0.0425125−0.967594i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−0.186−0.982i)T |
| 269 | 1+(−16.3+1.18i)T |
good | 3 | 1+(−0.0181+0.000425i)T+(2.99−0.140i)T2 |
| 5 | 1+(0.713−2.70i)T+(−4.34−2.46i)T2 |
| 7 | 1+(−1.80−4.02i)T+(−4.65+5.23i)T2 |
| 11 | 1+(2.74+3.08i)T+(−1.28+10.9i)T2 |
| 13 | 1+(−0.108+1.54i)T+(−12.8−1.82i)T2 |
| 17 | 1+(2.87+2.55i)T+(1.98+16.8i)T2 |
| 19 | 1+(−4.07−2.70i)T+(7.37+17.5i)T2 |
| 23 | 1+(−0.0466−1.98i)T+(−22.9+1.07i)T2 |
| 29 | 1+(−1.10−1.94i)T+(−14.8+24.8i)T2 |
| 31 | 1+(1.43+0.169i)T+(30.1+7.20i)T2 |
| 37 | 1+(0.326−0.608i)T+(−20.4−30.8i)T2 |
| 41 | 1+(−0.468−0.0888i)T+(38.1+15.0i)T2 |
| 43 | 1+(10.4−5.91i)T+(22.0−36.8i)T2 |
| 47 | 1+(5.51+1.59i)T+(39.7+25.0i)T2 |
| 53 | 1+(−5.74−7.83i)T+(−15.9+50.5i)T2 |
| 59 | 1+(−0.566−1.43i)T+(−43.1+40.2i)T2 |
| 61 | 1+(−5.45−6.74i)T+(−12.7+59.6i)T2 |
| 67 | 1+(−6.90−2.71i)T+(49.0+45.6i)T2 |
| 71 | 1+(−6.08+8.71i)T+(−24.4−66.6i)T2 |
| 73 | 1+(4.77−13.0i)T+(−55.6−47.2i)T2 |
| 79 | 1+(−11.9−9.20i)T+(20.1+76.3i)T2 |
| 83 | 1+(1.39+14.8i)T+(−81.5+15.4i)T2 |
| 89 | 1+(−2.40−14.5i)T+(−84.2+28.6i)T2 |
| 97 | 1+(−3.27+4.04i)T+(−20.3−94.8i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.46203560939207826137621843106, −10.52918562469548305278143190260, −9.251883960891406824034743617696, −8.359668381767209544673956810016, −7.85061850593693538016664250999, −6.65853028171629013113739527261, −5.64145707883593347802543709203, −5.20468156872112387263659729982, −3.28449015692008147318777104657, −2.62054989245534308240101089336,
0.52757378545028359423182493846, 1.97975594316244933735286570183, 3.66271809894041066304055031367, 4.69071535920127714392281639716, 5.13036212060368556714482396726, 6.83706023575108433912086836680, 7.956033898110376881215044372098, 8.554198248201803942383676705017, 9.600689333272792828008747264843, 10.50791160211931857320254780073