L(s) = 1 | + (−0.902 + 0.430i)2-s + (−0.405 + 2.86i)3-s + (0.628 − 0.777i)4-s + (0.0702 − 2.99i)5-s + (−0.867 − 2.75i)6-s + (−1.94 − 2.77i)7-s + (−0.232 + 0.972i)8-s + (−5.14 − 1.48i)9-s + (1.22 + 2.73i)10-s + (1.08 + 2.94i)11-s + (1.97 + 2.11i)12-s + (0.409 − 0.183i)13-s + (2.94 + 1.67i)14-s + (8.55 + 1.41i)15-s + (−0.209 − 0.977i)16-s + (7.08 + 2.59i)17-s + ⋯ |
L(s) = 1 | + (−0.638 + 0.304i)2-s + (−0.233 + 1.65i)3-s + (0.314 − 0.388i)4-s + (0.0314 − 1.34i)5-s + (−0.354 − 1.12i)6-s + (−0.733 − 1.05i)7-s + (−0.0821 + 0.343i)8-s + (−1.71 − 0.495i)9-s + (0.388 + 0.864i)10-s + (0.325 + 0.887i)11-s + (0.568 + 0.610i)12-s + (0.113 − 0.0509i)13-s + (0.788 + 0.446i)14-s + (2.20 + 0.365i)15-s + (−0.0523 − 0.244i)16-s + (1.71 + 0.630i)17-s + ⋯ |
Λ(s)=(=(538s/2ΓC(s)L(s)(0.664−0.747i)Λ(2−s)
Λ(s)=(=(538s/2ΓC(s+1/2)L(s)(0.664−0.747i)Λ(1−s)
Degree: |
2 |
Conductor: |
538
= 2⋅269
|
Sign: |
0.664−0.747i
|
Analytic conductor: |
4.29595 |
Root analytic conductor: |
2.07266 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ538(11,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 538, ( :1/2), 0.664−0.747i)
|
Particular Values
L(1) |
≈ |
0.856146+0.384564i |
L(21) |
≈ |
0.856146+0.384564i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.902−0.430i)T |
| 269 | 1+(11.4−11.7i)T |
good | 3 | 1+(0.405−2.86i)T+(−2.88−0.832i)T2 |
| 5 | 1+(−0.0702+2.99i)T+(−4.99−0.234i)T2 |
| 7 | 1+(1.94+2.77i)T+(−2.41+6.57i)T2 |
| 11 | 1+(−1.08−2.94i)T+(−8.38+7.11i)T2 |
| 13 | 1+(−0.409+0.183i)T+(8.63−9.71i)T2 |
| 17 | 1+(−7.08−2.59i)T+(12.9+10.9i)T2 |
| 19 | 1+(−0.861−2.18i)T+(−13.8+12.9i)T2 |
| 23 | 1+(−4.82−0.683i)T+(22.0+6.38i)T2 |
| 29 | 1+(0.421+8.98i)T+(−28.8+2.71i)T2 |
| 31 | 1+(−6.02−7.10i)T+(−5.06+30.5i)T2 |
| 37 | 1+(−7.15−1.35i)T+(34.4+13.5i)T2 |
| 41 | 1+(0.866−1.81i)T+(−25.7−31.8i)T2 |
| 43 | 1+(−7.44+0.349i)T+(42.8−4.02i)T2 |
| 47 | 1+(1.49+12.6i)T+(−45.7+10.9i)T2 |
| 53 | 1+(5.03+3.87i)T+(13.5+51.2i)T2 |
| 59 | 1+(1.90+1.54i)T+(12.3+57.6i)T2 |
| 61 | 1+(−1.19−1.62i)T+(−18.3+58.1i)T2 |
| 67 | 1+(−8.10−10.0i)T+(−14.0+65.5i)T2 |
| 71 | 1+(5.52+9.75i)T+(−36.4+60.9i)T2 |
| 73 | 1+(7.15+11.9i)T+(−34.5+64.3i)T2 |
| 79 | 1+(4.91−5.03i)T+(−1.85−78.9i)T2 |
| 83 | 1+(−3.41+5.41i)T+(−35.7−74.9i)T2 |
| 89 | 1+(−0.872−1.31i)T+(−34.5+82.0i)T2 |
| 97 | 1+(2.62−3.58i)T+(−29.1−92.5i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.37146671425770804544153192474, −9.980524456775106096068166693647, −9.456300637611862297530477544760, −8.530621025568135965169379986863, −7.57185433950153166896400493598, −6.20776037683552190002136282743, −5.19154130192810073104608006671, −4.38762814119296475806555173937, −3.47196390143824745895288148910, −0.978486862162350204958044079531,
1.03101214419777374341071785535, 2.78328852925823401385107564825, 2.97975167047838906019203230146, 5.75056135018102675459808790635, 6.31636033032643748331067752824, 7.15086616353671066646105123258, 7.80852737861204435754952244662, 8.899176269669940302279325129308, 9.757669313603721499964352155733, 11.05755437655372668370218740637