L(s) = 1 | + (−0.366 − 0.930i)2-s + (0.0594 + 1.26i)3-s + (−0.731 + 0.681i)4-s + (3.62 + 2.05i)5-s + (1.15 − 0.519i)6-s + (−2.31 − 2.06i)7-s + (0.902 + 0.430i)8-s + (1.38 − 0.130i)9-s + (0.583 − 4.12i)10-s + (0.568 − 4.82i)11-s + (−0.907 − 0.886i)12-s + (3.30 + 0.467i)13-s + (−1.06 + 2.91i)14-s + (−2.38 + 4.71i)15-s + (0.0702 − 0.997i)16-s + (0.156 − 0.0184i)17-s + ⋯ |
L(s) = 1 | + (−0.259 − 0.657i)2-s + (0.0343 + 0.731i)3-s + (−0.365 + 0.340i)4-s + (1.61 + 0.918i)5-s + (0.472 − 0.212i)6-s + (−0.876 − 0.779i)7-s + (0.319 + 0.152i)8-s + (0.461 − 0.0433i)9-s + (0.184 − 1.30i)10-s + (0.171 − 1.45i)11-s + (−0.262 − 0.255i)12-s + (0.916 + 0.129i)13-s + (−0.285 + 0.778i)14-s + (−0.616 + 1.21i)15-s + (0.0175 − 0.249i)16-s + (0.0379 − 0.00447i)17-s + ⋯ |
Λ(s)=(=(538s/2ΓC(s)L(s)(0.999−0.0198i)Λ(2−s)
Λ(s)=(=(538s/2ΓC(s+1/2)L(s)(0.999−0.0198i)Λ(1−s)
Degree: |
2 |
Conductor: |
538
= 2⋅269
|
Sign: |
0.999−0.0198i
|
Analytic conductor: |
4.29595 |
Root analytic conductor: |
2.07266 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ538(103,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 538, ( :1/2), 0.999−0.0198i)
|
Particular Values
L(1) |
≈ |
1.61929+0.0160836i |
L(21) |
≈ |
1.61929+0.0160836i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.366+0.930i)T |
| 269 | 1+(−16.2−2.14i)T |
good | 3 | 1+(−0.0594−1.26i)T+(−2.98+0.280i)T2 |
| 5 | 1+(−3.62−2.05i)T+(2.56+4.29i)T2 |
| 7 | 1+(2.31+2.06i)T+(0.818+6.95i)T2 |
| 11 | 1+(−0.568+4.82i)T+(−10.6−2.55i)T2 |
| 13 | 1+(−3.30−0.467i)T+(12.4+3.60i)T2 |
| 17 | 1+(−0.156+0.0184i)T+(16.5−3.94i)T2 |
| 19 | 1+(3.73−1.57i)T+(13.2−13.5i)T2 |
| 23 | 1+(−6.62+0.310i)T+(22.8−2.15i)T2 |
| 29 | 1+(−4.30−2.57i)T+(13.7+25.5i)T2 |
| 31 | 1+(1.92−8.06i)T+(−27.6−14.0i)T2 |
| 37 | 1+(5.42+8.16i)T+(−14.3+34.0i)T2 |
| 41 | 1+(3.01+1.18i)T+(29.9+27.9i)T2 |
| 43 | 1+(4.08−6.82i)T+(−20.3−37.8i)T2 |
| 47 | 1+(2.00+1.26i)T+(20.2+42.4i)T2 |
| 53 | 1+(0.340−1.08i)T+(−43.4−30.3i)T2 |
| 59 | 1+(5.07+5.44i)T+(−4.14+58.8i)T2 |
| 61 | 1+(−1.96+9.17i)T+(−55.6−24.9i)T2 |
| 67 | 1+(−8.97−8.36i)T+(4.70+66.8i)T2 |
| 71 | 1+(−0.00841+0.00308i)T+(54.1−45.9i)T2 |
| 73 | 1+(3.83+3.24i)T+(11.9+72.0i)T2 |
| 79 | 1+(3.55+13.4i)T+(−68.7+38.9i)T2 |
| 83 | 1+(−0.183−0.967i)T+(−77.2+30.4i)T2 |
| 89 | 1+(−4.94+1.68i)T+(70.5−54.3i)T2 |
| 97 | 1+(0.0510+0.238i)T+(−88.4+39.7i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.64970232685665432308864977163, −10.19376126193284128031836382913, −9.287081706692666180047954324414, −8.684821373650719004941002348303, −6.89323181971583717933539350307, −6.37451643326772851031884970150, −5.18436473242182650943996566583, −3.60835208693846960502878597698, −3.11960513005551406763910929441, −1.43220696990300565597797063796,
1.34851046341056459090630247040, 2.36582304449257446877960089416, 4.52763285299132586500099872778, 5.49419948598929492478695127177, 6.44487664467727120685020908853, 6.84493374848093035424475589005, 8.287577236283258976453453277826, 9.078595173574850684650504845550, 9.697729493243931114350545701745, 10.35440059920404706979022129753