L(s) = 1 | + (−0.186 + 0.982i)2-s + (−3.09 − 0.0725i)3-s + (−0.930 − 0.366i)4-s + (0.532 + 2.01i)5-s + (0.648 − 3.02i)6-s + (0.698 − 1.55i)7-s + (0.533 − 0.845i)8-s + (6.58 + 0.308i)9-s + (−2.08 + 0.146i)10-s + (1.67 − 1.88i)11-s + (2.85 + 1.20i)12-s + (0.229 + 3.25i)13-s + (1.39 + 0.976i)14-s + (−1.50 − 6.28i)15-s + (0.731 + 0.681i)16-s + (5.53 − 4.92i)17-s + ⋯ |
L(s) = 1 | + (−0.131 + 0.694i)2-s + (−1.78 − 0.0419i)3-s + (−0.465 − 0.183i)4-s + (0.238 + 0.902i)5-s + (0.264 − 1.23i)6-s + (0.264 − 0.588i)7-s + (0.188 − 0.299i)8-s + (2.19 + 0.102i)9-s + (−0.658 + 0.0463i)10-s + (0.504 − 0.567i)11-s + (0.823 + 0.346i)12-s + (0.0636 + 0.903i)13-s + (0.373 + 0.261i)14-s + (−0.387 − 1.62i)15-s + (0.182 + 0.170i)16-s + (1.34 − 1.19i)17-s + ⋯ |
Λ(s)=(=(538s/2ΓC(s)L(s)(−0.538−0.842i)Λ(2−s)
Λ(s)=(=(538s/2ΓC(s+1/2)L(s)(−0.538−0.842i)Λ(1−s)
Degree: |
2 |
Conductor: |
538
= 2⋅269
|
Sign: |
−0.538−0.842i
|
Analytic conductor: |
4.29595 |
Root analytic conductor: |
2.07266 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ538(369,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 538, ( :1/2), −0.538−0.842i)
|
Particular Values
L(1) |
≈ |
0.318383+0.581518i |
L(21) |
≈ |
0.318383+0.581518i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.186−0.982i)T |
| 269 | 1+(9.05+13.6i)T |
good | 3 | 1+(3.09+0.0725i)T+(2.99+0.140i)T2 |
| 5 | 1+(−0.532−2.01i)T+(−4.34+2.46i)T2 |
| 7 | 1+(−0.698+1.55i)T+(−4.65−5.23i)T2 |
| 11 | 1+(−1.67+1.88i)T+(−1.28−10.9i)T2 |
| 13 | 1+(−0.229−3.25i)T+(−12.8+1.82i)T2 |
| 17 | 1+(−5.53+4.92i)T+(1.98−16.8i)T2 |
| 19 | 1+(7.07−4.69i)T+(7.37−17.5i)T2 |
| 23 | 1+(0.0778−3.32i)T+(−22.9−1.07i)T2 |
| 29 | 1+(4.42−7.80i)T+(−14.8−24.8i)T2 |
| 31 | 1+(−4.01+0.472i)T+(30.1−7.20i)T2 |
| 37 | 1+(−3.75−6.99i)T+(−20.4+30.8i)T2 |
| 41 | 1+(11.6−2.21i)T+(38.1−15.0i)T2 |
| 43 | 1+(0.640+0.363i)T+(22.0+36.8i)T2 |
| 47 | 1+(3.40−0.985i)T+(39.7−25.0i)T2 |
| 53 | 1+(−4.31+5.88i)T+(−15.9−50.5i)T2 |
| 59 | 1+(2.33−5.93i)T+(−43.1−40.2i)T2 |
| 61 | 1+(−2.10+2.59i)T+(−12.7−59.6i)T2 |
| 67 | 1+(−9.96+3.92i)T+(49.0−45.6i)T2 |
| 71 | 1+(−6.58−9.43i)T+(−24.4+66.6i)T2 |
| 73 | 1+(−2.41−6.57i)T+(−55.6+47.2i)T2 |
| 79 | 1+(−0.584+0.450i)T+(20.1−76.3i)T2 |
| 83 | 1+(0.441−4.69i)T+(−81.5−15.4i)T2 |
| 89 | 1+(2.74−16.5i)T+(−84.2−28.6i)T2 |
| 97 | 1+(4.18+5.17i)T+(−20.3+94.8i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.13340213234494690777130985610, −10.30591491559653025593026800306, −9.704903090921604881623964995006, −8.208205100074676997436963569099, −6.96187769513207615974903837591, −6.68503443825819349688587148018, −5.76760130399089200177141899281, −4.88297451721081420499018310513, −3.72852262203814387711427518556, −1.28221478396287476739429848637,
0.59445899620366981316766909742, 1.91532937770597666355720437359, 4.06423617923112397177386521179, 4.94572460359600685392500770451, 5.67592434762625255259832317902, 6.53429848817585709333371739080, 7.988346867721258449002781351328, 8.938597117019317595657123903446, 10.02472495408021199864458993685, 10.56881154880690972125204915066