L(s) = 1 | + (−0.186 + 0.982i)2-s + (−2.06 − 0.0483i)3-s + (−0.930 − 0.366i)4-s + (−0.765 − 2.90i)5-s + (0.431 − 2.01i)6-s + (0.890 − 1.98i)7-s + (0.533 − 0.845i)8-s + (1.24 + 0.0584i)9-s + (2.99 − 0.210i)10-s + (−0.647 + 0.727i)11-s + (1.89 + 0.799i)12-s + (0.223 + 3.17i)13-s + (1.78 + 1.24i)14-s + (1.43 + 6.01i)15-s + (0.731 + 0.681i)16-s + (−4.38 + 3.89i)17-s + ⋯ |
L(s) = 1 | + (−0.131 + 0.694i)2-s + (−1.18 − 0.0278i)3-s + (−0.465 − 0.183i)4-s + (−0.342 − 1.29i)5-s + (0.176 − 0.822i)6-s + (0.336 − 0.749i)7-s + (0.188 − 0.299i)8-s + (0.415 + 0.0194i)9-s + (0.947 − 0.0667i)10-s + (−0.195 + 0.219i)11-s + (0.548 + 0.230i)12-s + (0.0620 + 0.881i)13-s + (0.476 + 0.332i)14-s + (0.371 + 1.55i)15-s + (0.182 + 0.170i)16-s + (−1.06 + 0.945i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 538 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.934 - 0.356i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 538 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.934 - 0.356i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.0249287 + 0.135341i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.0249287 + 0.135341i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.186 - 0.982i)T \) |
| 269 | \( 1 + (15.4 + 5.60i)T \) |
good | 3 | \( 1 + (2.06 + 0.0483i)T + (2.99 + 0.140i)T^{2} \) |
| 5 | \( 1 + (0.765 + 2.90i)T + (-4.34 + 2.46i)T^{2} \) |
| 7 | \( 1 + (-0.890 + 1.98i)T + (-4.65 - 5.23i)T^{2} \) |
| 11 | \( 1 + (0.647 - 0.727i)T + (-1.28 - 10.9i)T^{2} \) |
| 13 | \( 1 + (-0.223 - 3.17i)T + (-12.8 + 1.82i)T^{2} \) |
| 17 | \( 1 + (4.38 - 3.89i)T + (1.98 - 16.8i)T^{2} \) |
| 19 | \( 1 + (1.29 - 0.857i)T + (7.37 - 17.5i)T^{2} \) |
| 23 | \( 1 + (-0.0751 + 3.20i)T + (-22.9 - 1.07i)T^{2} \) |
| 29 | \( 1 + (2.61 - 4.60i)T + (-14.8 - 24.8i)T^{2} \) |
| 31 | \( 1 + (2.84 - 0.335i)T + (30.1 - 7.20i)T^{2} \) |
| 37 | \( 1 + (1.28 + 2.39i)T + (-20.4 + 30.8i)T^{2} \) |
| 41 | \( 1 + (2.32 - 0.440i)T + (38.1 - 15.0i)T^{2} \) |
| 43 | \( 1 + (-4.44 - 2.52i)T + (22.0 + 36.8i)T^{2} \) |
| 47 | \( 1 + (0.272 - 0.0788i)T + (39.7 - 25.0i)T^{2} \) |
| 53 | \( 1 + (7.98 - 10.8i)T + (-15.9 - 50.5i)T^{2} \) |
| 59 | \( 1 + (1.59 - 4.05i)T + (-43.1 - 40.2i)T^{2} \) |
| 61 | \( 1 + (6.91 - 8.54i)T + (-12.7 - 59.6i)T^{2} \) |
| 67 | \( 1 + (-2.68 + 1.05i)T + (49.0 - 45.6i)T^{2} \) |
| 71 | \( 1 + (6.75 + 9.67i)T + (-24.4 + 66.6i)T^{2} \) |
| 73 | \( 1 + (-0.149 - 0.406i)T + (-55.6 + 47.2i)T^{2} \) |
| 79 | \( 1 + (1.94 - 1.50i)T + (20.1 - 76.3i)T^{2} \) |
| 83 | \( 1 + (0.804 - 8.54i)T + (-81.5 - 15.4i)T^{2} \) |
| 89 | \( 1 + (-0.744 + 4.49i)T + (-84.2 - 28.6i)T^{2} \) |
| 97 | \( 1 + (-6.95 - 8.60i)T + (-20.3 + 94.8i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.04268486670315221085120683192, −10.58467207024498496898738264254, −9.172762296013599672881691532517, −8.581080355594606761400401526056, −7.52988963828064339581071034240, −6.58101763522647673293673202024, −5.70296782862142400267808186694, −4.63285235947857113174186276613, −4.25804613242130860304309800052, −1.39240794649207275132172270612,
0.10192917759816884697659065899, 2.34113347458488596798725849391, 3.36978791787020546121287676388, 4.84695977152715975099902385786, 5.71607233314443666787823721410, 6.67272522681332599868755867190, 7.68866392861177054013052489512, 8.780894744811539387548355578483, 9.911700947055786357085789839542, 10.79766353062664221048410368796