Properties

Label 2-538-1.1-c1-0-9
Degree $2$
Conductor $538$
Sign $1$
Analytic cond. $4.29595$
Root an. cond. $2.07266$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 3.04·3-s + 4-s + 1.48·5-s − 3.04·6-s + 0.344·7-s − 8-s + 6.29·9-s − 1.48·10-s − 0.905·11-s + 3.04·12-s − 2.24·13-s − 0.344·14-s + 4.53·15-s + 16-s + 2.58·17-s − 6.29·18-s − 0.688·19-s + 1.48·20-s + 1.04·21-s + 0.905·22-s + 1.46·23-s − 3.04·24-s − 2.78·25-s + 2.24·26-s + 10.0·27-s + 0.344·28-s + ⋯
L(s)  = 1  − 0.707·2-s + 1.76·3-s + 0.5·4-s + 0.665·5-s − 1.24·6-s + 0.130·7-s − 0.353·8-s + 2.09·9-s − 0.470·10-s − 0.273·11-s + 0.880·12-s − 0.623·13-s − 0.0919·14-s + 1.17·15-s + 0.250·16-s + 0.627·17-s − 1.48·18-s − 0.157·19-s + 0.332·20-s + 0.229·21-s + 0.193·22-s + 0.304·23-s − 0.622·24-s − 0.557·25-s + 0.441·26-s + 1.93·27-s + 0.0650·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 538 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 538 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(538\)    =    \(2 \cdot 269\)
Sign: $1$
Analytic conductor: \(4.29595\)
Root analytic conductor: \(2.07266\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 538,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.067539681\)
\(L(\frac12)\) \(\approx\) \(2.067539681\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + T \)
269 \( 1 - T \)
good3 \( 1 - 3.04T + 3T^{2} \)
5 \( 1 - 1.48T + 5T^{2} \)
7 \( 1 - 0.344T + 7T^{2} \)
11 \( 1 + 0.905T + 11T^{2} \)
13 \( 1 + 2.24T + 13T^{2} \)
17 \( 1 - 2.58T + 17T^{2} \)
19 \( 1 + 0.688T + 19T^{2} \)
23 \( 1 - 1.46T + 23T^{2} \)
29 \( 1 + 4.24T + 29T^{2} \)
31 \( 1 - 1.92T + 31T^{2} \)
37 \( 1 + 1.84T + 37T^{2} \)
41 \( 1 - 1.21T + 41T^{2} \)
43 \( 1 + 6.59T + 43T^{2} \)
47 \( 1 + 6.42T + 47T^{2} \)
53 \( 1 - 2.87T + 53T^{2} \)
59 \( 1 - 11.0T + 59T^{2} \)
61 \( 1 + 1.75T + 61T^{2} \)
67 \( 1 - 4.34T + 67T^{2} \)
71 \( 1 - 5.29T + 71T^{2} \)
73 \( 1 - 5.90T + 73T^{2} \)
79 \( 1 + 15.1T + 79T^{2} \)
83 \( 1 - 15.7T + 83T^{2} \)
89 \( 1 + 1.61T + 89T^{2} \)
97 \( 1 - 14.3T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.27294859026301331102160398984, −9.772291867283740368337284756728, −9.096558459979297704909355160644, −8.200609362081373821187882845746, −7.62246017138901322808141009128, −6.63178167518341311723693321948, −5.18577238747919645306811178745, −3.68149435561549818431328879875, −2.61259424255856168354097745297, −1.71212161812236731954651064958, 1.71212161812236731954651064958, 2.61259424255856168354097745297, 3.68149435561549818431328879875, 5.18577238747919645306811178745, 6.63178167518341311723693321948, 7.62246017138901322808141009128, 8.200609362081373821187882845746, 9.096558459979297704909355160644, 9.772291867283740368337284756728, 10.27294859026301331102160398984

Graph of the $Z$-function along the critical line