L(s) = 1 | − 2-s + 3.04·3-s + 4-s + 1.48·5-s − 3.04·6-s + 0.344·7-s − 8-s + 6.29·9-s − 1.48·10-s − 0.905·11-s + 3.04·12-s − 2.24·13-s − 0.344·14-s + 4.53·15-s + 16-s + 2.58·17-s − 6.29·18-s − 0.688·19-s + 1.48·20-s + 1.04·21-s + 0.905·22-s + 1.46·23-s − 3.04·24-s − 2.78·25-s + 2.24·26-s + 10.0·27-s + 0.344·28-s + ⋯ |
L(s) = 1 | − 0.707·2-s + 1.76·3-s + 0.5·4-s + 0.665·5-s − 1.24·6-s + 0.130·7-s − 0.353·8-s + 2.09·9-s − 0.470·10-s − 0.273·11-s + 0.880·12-s − 0.623·13-s − 0.0919·14-s + 1.17·15-s + 0.250·16-s + 0.627·17-s − 1.48·18-s − 0.157·19-s + 0.332·20-s + 0.229·21-s + 0.193·22-s + 0.304·23-s − 0.622·24-s − 0.557·25-s + 0.441·26-s + 1.93·27-s + 0.0650·28-s + ⋯ |
Λ(s)=(=(538s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(538s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
2.067539681 |
L(21) |
≈ |
2.067539681 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+T |
| 269 | 1−T |
good | 3 | 1−3.04T+3T2 |
| 5 | 1−1.48T+5T2 |
| 7 | 1−0.344T+7T2 |
| 11 | 1+0.905T+11T2 |
| 13 | 1+2.24T+13T2 |
| 17 | 1−2.58T+17T2 |
| 19 | 1+0.688T+19T2 |
| 23 | 1−1.46T+23T2 |
| 29 | 1+4.24T+29T2 |
| 31 | 1−1.92T+31T2 |
| 37 | 1+1.84T+37T2 |
| 41 | 1−1.21T+41T2 |
| 43 | 1+6.59T+43T2 |
| 47 | 1+6.42T+47T2 |
| 53 | 1−2.87T+53T2 |
| 59 | 1−11.0T+59T2 |
| 61 | 1+1.75T+61T2 |
| 67 | 1−4.34T+67T2 |
| 71 | 1−5.29T+71T2 |
| 73 | 1−5.90T+73T2 |
| 79 | 1+15.1T+79T2 |
| 83 | 1−15.7T+83T2 |
| 89 | 1+1.61T+89T2 |
| 97 | 1−14.3T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.27294859026301331102160398984, −9.772291867283740368337284756728, −9.096558459979297704909355160644, −8.200609362081373821187882845746, −7.62246017138901322808141009128, −6.63178167518341311723693321948, −5.18577238747919645306811178745, −3.68149435561549818431328879875, −2.61259424255856168354097745297, −1.71212161812236731954651064958,
1.71212161812236731954651064958, 2.61259424255856168354097745297, 3.68149435561549818431328879875, 5.18577238747919645306811178745, 6.63178167518341311723693321948, 7.62246017138901322808141009128, 8.200609362081373821187882845746, 9.096558459979297704909355160644, 9.772291867283740368337284756728, 10.27294859026301331102160398984