L(s) = 1 | − 2-s + 1.34·3-s + 4-s + 3.90·5-s − 1.34·6-s − 0.487·7-s − 8-s − 1.19·9-s − 3.90·10-s + 4.04·11-s + 1.34·12-s + 3.53·13-s + 0.487·14-s + 5.24·15-s + 16-s − 6.37·17-s + 1.19·18-s + 0.975·19-s + 3.90·20-s − 0.655·21-s − 4.04·22-s + 0.750·23-s − 1.34·24-s + 10.2·25-s − 3.53·26-s − 5.63·27-s − 0.487·28-s + ⋯ |
L(s) = 1 | − 0.707·2-s + 0.776·3-s + 0.5·4-s + 1.74·5-s − 0.548·6-s − 0.184·7-s − 0.353·8-s − 0.397·9-s − 1.23·10-s + 1.22·11-s + 0.388·12-s + 0.981·13-s + 0.130·14-s + 1.35·15-s + 0.250·16-s − 1.54·17-s + 0.281·18-s + 0.223·19-s + 0.873·20-s − 0.143·21-s − 0.863·22-s + 0.156·23-s − 0.274·24-s + 2.05·25-s − 0.693·26-s − 1.08·27-s − 0.0922·28-s + ⋯ |
Λ(s)=(=(538s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(538s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
1.772918389 |
L(21) |
≈ |
1.772918389 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+T |
| 269 | 1−T |
good | 3 | 1−1.34T+3T2 |
| 5 | 1−3.90T+5T2 |
| 7 | 1+0.487T+7T2 |
| 11 | 1−4.04T+11T2 |
| 13 | 1−3.53T+13T2 |
| 17 | 1+6.37T+17T2 |
| 19 | 1−0.975T+19T2 |
| 23 | 1−0.750T+23T2 |
| 29 | 1+4.08T+29T2 |
| 31 | 1+7.86T+31T2 |
| 37 | 1+4.22T+37T2 |
| 41 | 1+2.07T+41T2 |
| 43 | 1−10.7T+43T2 |
| 47 | 1−9.31T+47T2 |
| 53 | 1−11.1T+53T2 |
| 59 | 1+2.98T+59T2 |
| 61 | 1+7.53T+61T2 |
| 67 | 1−3.51T+67T2 |
| 71 | 1−14.1T+71T2 |
| 73 | 1+9.75T+73T2 |
| 79 | 1−2.29T+79T2 |
| 83 | 1+17.1T+83T2 |
| 89 | 1−1.86T+89T2 |
| 97 | 1+9.63T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.70647176915355308046833031336, −9.565074878449781993456058801529, −9.009815312926693731781485797971, −8.727348526109066696294612888373, −7.18430664689741418114004597618, −6.30196371455321299080964928772, −5.60533450717780083541617327027, −3.80936701963792566063123451023, −2.48415845756228362038085488963, −1.58602000741028475136762805962,
1.58602000741028475136762805962, 2.48415845756228362038085488963, 3.80936701963792566063123451023, 5.60533450717780083541617327027, 6.30196371455321299080964928772, 7.18430664689741418114004597618, 8.727348526109066696294612888373, 9.009815312926693731781485797971, 9.565074878449781993456058801529, 10.70647176915355308046833031336