Properties

Label 2-538-1.1-c1-0-7
Degree $2$
Conductor $538$
Sign $1$
Analytic cond. $4.29595$
Root an. cond. $2.07266$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 1.34·3-s + 4-s + 3.90·5-s − 1.34·6-s − 0.487·7-s − 8-s − 1.19·9-s − 3.90·10-s + 4.04·11-s + 1.34·12-s + 3.53·13-s + 0.487·14-s + 5.24·15-s + 16-s − 6.37·17-s + 1.19·18-s + 0.975·19-s + 3.90·20-s − 0.655·21-s − 4.04·22-s + 0.750·23-s − 1.34·24-s + 10.2·25-s − 3.53·26-s − 5.63·27-s − 0.487·28-s + ⋯
L(s)  = 1  − 0.707·2-s + 0.776·3-s + 0.5·4-s + 1.74·5-s − 0.548·6-s − 0.184·7-s − 0.353·8-s − 0.397·9-s − 1.23·10-s + 1.22·11-s + 0.388·12-s + 0.981·13-s + 0.130·14-s + 1.35·15-s + 0.250·16-s − 1.54·17-s + 0.281·18-s + 0.223·19-s + 0.873·20-s − 0.143·21-s − 0.863·22-s + 0.156·23-s − 0.274·24-s + 2.05·25-s − 0.693·26-s − 1.08·27-s − 0.0922·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 538 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 538 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(538\)    =    \(2 \cdot 269\)
Sign: $1$
Analytic conductor: \(4.29595\)
Root analytic conductor: \(2.07266\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 538,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.772918389\)
\(L(\frac12)\) \(\approx\) \(1.772918389\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + T \)
269 \( 1 - T \)
good3 \( 1 - 1.34T + 3T^{2} \)
5 \( 1 - 3.90T + 5T^{2} \)
7 \( 1 + 0.487T + 7T^{2} \)
11 \( 1 - 4.04T + 11T^{2} \)
13 \( 1 - 3.53T + 13T^{2} \)
17 \( 1 + 6.37T + 17T^{2} \)
19 \( 1 - 0.975T + 19T^{2} \)
23 \( 1 - 0.750T + 23T^{2} \)
29 \( 1 + 4.08T + 29T^{2} \)
31 \( 1 + 7.86T + 31T^{2} \)
37 \( 1 + 4.22T + 37T^{2} \)
41 \( 1 + 2.07T + 41T^{2} \)
43 \( 1 - 10.7T + 43T^{2} \)
47 \( 1 - 9.31T + 47T^{2} \)
53 \( 1 - 11.1T + 53T^{2} \)
59 \( 1 + 2.98T + 59T^{2} \)
61 \( 1 + 7.53T + 61T^{2} \)
67 \( 1 - 3.51T + 67T^{2} \)
71 \( 1 - 14.1T + 71T^{2} \)
73 \( 1 + 9.75T + 73T^{2} \)
79 \( 1 - 2.29T + 79T^{2} \)
83 \( 1 + 17.1T + 83T^{2} \)
89 \( 1 - 1.86T + 89T^{2} \)
97 \( 1 + 9.63T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.70647176915355308046833031336, −9.565074878449781993456058801529, −9.009815312926693731781485797971, −8.727348526109066696294612888373, −7.18430664689741418114004597618, −6.30196371455321299080964928772, −5.60533450717780083541617327027, −3.80936701963792566063123451023, −2.48415845756228362038085488963, −1.58602000741028475136762805962, 1.58602000741028475136762805962, 2.48415845756228362038085488963, 3.80936701963792566063123451023, 5.60533450717780083541617327027, 6.30196371455321299080964928772, 7.18430664689741418114004597618, 8.727348526109066696294612888373, 9.009815312926693731781485797971, 9.565074878449781993456058801529, 10.70647176915355308046833031336

Graph of the $Z$-function along the critical line