Properties

Label 2-538-1.1-c1-0-12
Degree $2$
Conductor $538$
Sign $1$
Analytic cond. $4.29595$
Root an. cond. $2.07266$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 1.65·3-s + 4-s + 0.725·5-s + 1.65·6-s + 1.29·7-s + 8-s − 0.269·9-s + 0.725·10-s − 3.71·11-s + 1.65·12-s + 2.30·13-s + 1.29·14-s + 1.19·15-s + 16-s + 6.32·17-s − 0.269·18-s + 0.0212·19-s + 0.725·20-s + 2.14·21-s − 3.71·22-s − 1.30·23-s + 1.65·24-s − 4.47·25-s + 2.30·26-s − 5.40·27-s + 1.29·28-s + ⋯
L(s)  = 1  + 0.707·2-s + 0.954·3-s + 0.5·4-s + 0.324·5-s + 0.674·6-s + 0.491·7-s + 0.353·8-s − 0.0896·9-s + 0.229·10-s − 1.12·11-s + 0.477·12-s + 0.640·13-s + 0.347·14-s + 0.309·15-s + 0.250·16-s + 1.53·17-s − 0.0634·18-s + 0.00487·19-s + 0.162·20-s + 0.468·21-s − 0.792·22-s − 0.272·23-s + 0.337·24-s − 0.894·25-s + 0.452·26-s − 1.03·27-s + 0.245·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 538 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 538 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(538\)    =    \(2 \cdot 269\)
Sign: $1$
Analytic conductor: \(4.29595\)
Root analytic conductor: \(2.07266\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 538,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.039392060\)
\(L(\frac12)\) \(\approx\) \(3.039392060\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - T \)
269 \( 1 + T \)
good3 \( 1 - 1.65T + 3T^{2} \)
5 \( 1 - 0.725T + 5T^{2} \)
7 \( 1 - 1.29T + 7T^{2} \)
11 \( 1 + 3.71T + 11T^{2} \)
13 \( 1 - 2.30T + 13T^{2} \)
17 \( 1 - 6.32T + 17T^{2} \)
19 \( 1 - 0.0212T + 19T^{2} \)
23 \( 1 + 1.30T + 23T^{2} \)
29 \( 1 + 2.06T + 29T^{2} \)
31 \( 1 + 5.82T + 31T^{2} \)
37 \( 1 + 7.25T + 37T^{2} \)
41 \( 1 - 8.77T + 41T^{2} \)
43 \( 1 - 4.52T + 43T^{2} \)
47 \( 1 - 3.85T + 47T^{2} \)
53 \( 1 + 6.86T + 53T^{2} \)
59 \( 1 - 7.84T + 59T^{2} \)
61 \( 1 - 3.84T + 61T^{2} \)
67 \( 1 + 9.31T + 67T^{2} \)
71 \( 1 + 0.643T + 71T^{2} \)
73 \( 1 + 2.97T + 73T^{2} \)
79 \( 1 - 0.418T + 79T^{2} \)
83 \( 1 + 15.6T + 83T^{2} \)
89 \( 1 - 10.3T + 89T^{2} \)
97 \( 1 - 5.07T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.85470600500216461815499180265, −9.991636738218995253077395919556, −8.972093888940116060710189778839, −7.955089796853058772826087668280, −7.50622136560456556881854933257, −5.89214041651080648345770327155, −5.33500341220536760231560600725, −3.90074527201998946004366696834, −2.98345055186004453631441149281, −1.86331627140814674766273129677, 1.86331627140814674766273129677, 2.98345055186004453631441149281, 3.90074527201998946004366696834, 5.33500341220536760231560600725, 5.89214041651080648345770327155, 7.50622136560456556881854933257, 7.955089796853058772826087668280, 8.972093888940116060710189778839, 9.991636738218995253077395919556, 10.85470600500216461815499180265

Graph of the $Z$-function along the critical line