L(s) = 1 | + 2-s + 1.65·3-s + 4-s + 0.725·5-s + 1.65·6-s + 1.29·7-s + 8-s − 0.269·9-s + 0.725·10-s − 3.71·11-s + 1.65·12-s + 2.30·13-s + 1.29·14-s + 1.19·15-s + 16-s + 6.32·17-s − 0.269·18-s + 0.0212·19-s + 0.725·20-s + 2.14·21-s − 3.71·22-s − 1.30·23-s + 1.65·24-s − 4.47·25-s + 2.30·26-s − 5.40·27-s + 1.29·28-s + ⋯ |
L(s) = 1 | + 0.707·2-s + 0.954·3-s + 0.5·4-s + 0.324·5-s + 0.674·6-s + 0.491·7-s + 0.353·8-s − 0.0896·9-s + 0.229·10-s − 1.12·11-s + 0.477·12-s + 0.640·13-s + 0.347·14-s + 0.309·15-s + 0.250·16-s + 1.53·17-s − 0.0634·18-s + 0.00487·19-s + 0.162·20-s + 0.468·21-s − 0.792·22-s − 0.272·23-s + 0.337·24-s − 0.894·25-s + 0.452·26-s − 1.03·27-s + 0.245·28-s + ⋯ |
Λ(s)=(=(538s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(538s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
3.039392060 |
L(21) |
≈ |
3.039392060 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1−T |
| 269 | 1+T |
good | 3 | 1−1.65T+3T2 |
| 5 | 1−0.725T+5T2 |
| 7 | 1−1.29T+7T2 |
| 11 | 1+3.71T+11T2 |
| 13 | 1−2.30T+13T2 |
| 17 | 1−6.32T+17T2 |
| 19 | 1−0.0212T+19T2 |
| 23 | 1+1.30T+23T2 |
| 29 | 1+2.06T+29T2 |
| 31 | 1+5.82T+31T2 |
| 37 | 1+7.25T+37T2 |
| 41 | 1−8.77T+41T2 |
| 43 | 1−4.52T+43T2 |
| 47 | 1−3.85T+47T2 |
| 53 | 1+6.86T+53T2 |
| 59 | 1−7.84T+59T2 |
| 61 | 1−3.84T+61T2 |
| 67 | 1+9.31T+67T2 |
| 71 | 1+0.643T+71T2 |
| 73 | 1+2.97T+73T2 |
| 79 | 1−0.418T+79T2 |
| 83 | 1+15.6T+83T2 |
| 89 | 1−10.3T+89T2 |
| 97 | 1−5.07T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.85470600500216461815499180265, −9.991636738218995253077395919556, −8.972093888940116060710189778839, −7.955089796853058772826087668280, −7.50622136560456556881854933257, −5.89214041651080648345770327155, −5.33500341220536760231560600725, −3.90074527201998946004366696834, −2.98345055186004453631441149281, −1.86331627140814674766273129677,
1.86331627140814674766273129677, 2.98345055186004453631441149281, 3.90074527201998946004366696834, 5.33500341220536760231560600725, 5.89214041651080648345770327155, 7.50622136560456556881854933257, 7.955089796853058772826087668280, 8.972093888940116060710189778839, 9.991636738218995253077395919556, 10.85470600500216461815499180265