L(s) = 1 | + i·3-s − 2i·5-s − 7-s − 9-s + 4i·11-s + 6i·13-s + 2·15-s − 2·17-s + 4i·19-s − i·21-s − 4·23-s + 25-s − i·27-s + 2i·29-s − 8·31-s + ⋯ |
L(s) = 1 | + 0.577i·3-s − 0.894i·5-s − 0.377·7-s − 0.333·9-s + 1.20i·11-s + 1.66i·13-s + 0.516·15-s − 0.485·17-s + 0.917i·19-s − 0.218i·21-s − 0.834·23-s + 0.200·25-s − 0.192i·27-s + 0.371i·29-s − 1.43·31-s + ⋯ |
Λ(s)=(=(5376s/2ΓC(s)L(s)(−0.707+0.707i)Λ(2−s)
Λ(s)=(=(5376s/2ΓC(s+1/2)L(s)(−0.707+0.707i)Λ(1−s)
Degree: |
2 |
Conductor: |
5376
= 28⋅3⋅7
|
Sign: |
−0.707+0.707i
|
Analytic conductor: |
42.9275 |
Root analytic conductor: |
6.55191 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ5376(2689,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
1
|
Selberg data: |
(2, 5376, ( :1/2), −0.707+0.707i)
|
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1−iT |
| 7 | 1+T |
good | 5 | 1+2iT−5T2 |
| 11 | 1−4iT−11T2 |
| 13 | 1−6iT−13T2 |
| 17 | 1+2T+17T2 |
| 19 | 1−4iT−19T2 |
| 23 | 1+4T+23T2 |
| 29 | 1−2iT−29T2 |
| 31 | 1+8T+31T2 |
| 37 | 1+10iT−37T2 |
| 41 | 1−2T+41T2 |
| 43 | 1+8iT−43T2 |
| 47 | 1+47T2 |
| 53 | 1+10iT−53T2 |
| 59 | 1−12iT−59T2 |
| 61 | 1+10iT−61T2 |
| 67 | 1+8iT−67T2 |
| 71 | 1−12T+71T2 |
| 73 | 1+2T+73T2 |
| 79 | 1+79T2 |
| 83 | 1−12iT−83T2 |
| 89 | 1+6T+89T2 |
| 97 | 1−2T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−7.980429295829972763339150929376, −7.12848448210342444478720069643, −6.55197057222954709846150037150, −5.54797915635949854005537895631, −4.96385823607857016413063572385, −4.01473040705127168586474644964, −3.88383371842442626249107445350, −2.25480581246777942234856344863, −1.67371036811037920712114210785, 0,
1.07402376152324713741471343362, 2.54705289132506810292487891514, 2.98805194554284973854058449427, 3.71516227340279091913054824687, 4.95201737198047055716805399331, 5.83618228497125908807436319511, 6.26426247803484509552425333969, 7.00005604742938908064987684111, 7.72213915376762324295688574673