Properties

Label 2-5328-1.1-c1-0-51
Degree $2$
Conductor $5328$
Sign $1$
Analytic cond. $42.5442$
Root an. cond. $6.52259$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3.83·5-s + 3.19·7-s − 3.48·11-s + 5.48·13-s + 7.32·17-s − 3.48·19-s + 4.05·23-s + 9.68·25-s − 7.83·29-s + 6.97·31-s + 12.2·35-s − 37-s − 2.58·41-s − 4·43-s + 6.39·47-s + 3.21·49-s − 11.8·53-s − 13.3·55-s − 12.8·59-s + 6.58·61-s + 21.0·65-s + 3.37·67-s − 13.3·71-s + 10.4·73-s − 11.1·77-s + 5.27·79-s + 9.88·83-s + ⋯
L(s)  = 1  + 1.71·5-s + 1.20·7-s − 1.05·11-s + 1.52·13-s + 1.77·17-s − 0.800·19-s + 0.844·23-s + 1.93·25-s − 1.45·29-s + 1.25·31-s + 2.07·35-s − 0.164·37-s − 0.403·41-s − 0.609·43-s + 0.932·47-s + 0.459·49-s − 1.63·53-s − 1.80·55-s − 1.66·59-s + 0.843·61-s + 2.60·65-s + 0.411·67-s − 1.58·71-s + 1.22·73-s − 1.27·77-s + 0.593·79-s + 1.08·83-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 5328 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5328 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(5328\)    =    \(2^{4} \cdot 3^{2} \cdot 37\)
Sign: $1$
Analytic conductor: \(42.5442\)
Root analytic conductor: \(6.52259\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 5328,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.637739155\)
\(L(\frac12)\) \(\approx\) \(3.637739155\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
37 \( 1 + T \)
good5 \( 1 - 3.83T + 5T^{2} \)
7 \( 1 - 3.19T + 7T^{2} \)
11 \( 1 + 3.48T + 11T^{2} \)
13 \( 1 - 5.48T + 13T^{2} \)
17 \( 1 - 7.32T + 17T^{2} \)
19 \( 1 + 3.48T + 19T^{2} \)
23 \( 1 - 4.05T + 23T^{2} \)
29 \( 1 + 7.83T + 29T^{2} \)
31 \( 1 - 6.97T + 31T^{2} \)
41 \( 1 + 2.58T + 41T^{2} \)
43 \( 1 + 4T + 43T^{2} \)
47 \( 1 - 6.39T + 47T^{2} \)
53 \( 1 + 11.8T + 53T^{2} \)
59 \( 1 + 12.8T + 59T^{2} \)
61 \( 1 - 6.58T + 61T^{2} \)
67 \( 1 - 3.37T + 67T^{2} \)
71 \( 1 + 13.3T + 71T^{2} \)
73 \( 1 - 10.4T + 73T^{2} \)
79 \( 1 - 5.27T + 79T^{2} \)
83 \( 1 - 9.88T + 83T^{2} \)
89 \( 1 - 15.3T + 89T^{2} \)
97 \( 1 + 1.66T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.137409115940839344415673387052, −7.68661463213789804147028746581, −6.52436652416317869702972342965, −5.94857127595246515907624199757, −5.29924308934925318312748339589, −4.86433031871118026622174598689, −3.59614220269243740113552461925, −2.68252171844312801670975787400, −1.73843282871180061210545089491, −1.17995356105643239685532551201, 1.17995356105643239685532551201, 1.73843282871180061210545089491, 2.68252171844312801670975787400, 3.59614220269243740113552461925, 4.86433031871118026622174598689, 5.29924308934925318312748339589, 5.94857127595246515907624199757, 6.52436652416317869702972342965, 7.68661463213789804147028746581, 8.137409115940839344415673387052

Graph of the $Z$-function along the critical line