Properties

Label 2-5328-1.1-c1-0-5
Degree $2$
Conductor $5328$
Sign $1$
Analytic cond. $42.5442$
Root an. cond. $6.52259$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 1.30·5-s − 4.60·7-s + 1.30·11-s − 2.30·13-s + 6·17-s − 2·19-s − 6.90·23-s − 3.30·25-s − 6.90·29-s − 3.30·31-s + 6·35-s + 37-s + 0.908·41-s + 6.60·43-s − 2.60·47-s + 14.2·49-s + 6·53-s − 1.69·55-s + 3.39·59-s − 10.5·61-s + 3·65-s − 14.5·67-s + 6·71-s − 8.69·73-s − 6·77-s + 16.1·79-s + 17.2·83-s + ⋯
L(s)  = 1  − 0.582·5-s − 1.74·7-s + 0.392·11-s − 0.638·13-s + 1.45·17-s − 0.458·19-s − 1.44·23-s − 0.660·25-s − 1.28·29-s − 0.593·31-s + 1.01·35-s + 0.164·37-s + 0.141·41-s + 1.00·43-s − 0.380·47-s + 2.03·49-s + 0.824·53-s − 0.228·55-s + 0.441·59-s − 1.34·61-s + 0.372·65-s − 1.77·67-s + 0.712·71-s − 1.01·73-s − 0.683·77-s + 1.81·79-s + 1.88·83-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 5328 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5328 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(5328\)    =    \(2^{4} \cdot 3^{2} \cdot 37\)
Sign: $1$
Analytic conductor: \(42.5442\)
Root analytic conductor: \(6.52259\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 5328,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.7414371140\)
\(L(\frac12)\) \(\approx\) \(0.7414371140\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
37 \( 1 - T \)
good5 \( 1 + 1.30T + 5T^{2} \)
7 \( 1 + 4.60T + 7T^{2} \)
11 \( 1 - 1.30T + 11T^{2} \)
13 \( 1 + 2.30T + 13T^{2} \)
17 \( 1 - 6T + 17T^{2} \)
19 \( 1 + 2T + 19T^{2} \)
23 \( 1 + 6.90T + 23T^{2} \)
29 \( 1 + 6.90T + 29T^{2} \)
31 \( 1 + 3.30T + 31T^{2} \)
41 \( 1 - 0.908T + 41T^{2} \)
43 \( 1 - 6.60T + 43T^{2} \)
47 \( 1 + 2.60T + 47T^{2} \)
53 \( 1 - 6T + 53T^{2} \)
59 \( 1 - 3.39T + 59T^{2} \)
61 \( 1 + 10.5T + 61T^{2} \)
67 \( 1 + 14.5T + 67T^{2} \)
71 \( 1 - 6T + 71T^{2} \)
73 \( 1 + 8.69T + 73T^{2} \)
79 \( 1 - 16.1T + 79T^{2} \)
83 \( 1 - 17.2T + 83T^{2} \)
89 \( 1 + 5.21T + 89T^{2} \)
97 \( 1 - 12.4T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.917412893735398735986211858177, −7.58242637061055568943259050906, −6.75874815607977243786170772059, −5.99904347861116558143262700295, −5.53629837794986049556700759798, −4.20930440610602166843192013789, −3.70795194043446432463270997150, −3.02653839150152059887048336757, −1.95889160974842474047576033800, −0.44139049440837343800753970317, 0.44139049440837343800753970317, 1.95889160974842474047576033800, 3.02653839150152059887048336757, 3.70795194043446432463270997150, 4.20930440610602166843192013789, 5.53629837794986049556700759798, 5.99904347861116558143262700295, 6.75874815607977243786170772059, 7.58242637061055568943259050906, 7.917412893735398735986211858177

Graph of the $Z$-function along the critical line