Properties

Label 2-5328-1.1-c1-0-27
Degree $2$
Conductor $5328$
Sign $1$
Analytic cond. $42.5442$
Root an. cond. $6.52259$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3.19·5-s + 4.72·7-s − 1.62·11-s + 6.89·13-s + 7.02·17-s − 0.601·19-s + 3.69·23-s + 5.22·25-s − 7.32·29-s − 5.49·31-s − 15.1·35-s + 37-s + 0.125·41-s + 11.6·43-s + 9.32·47-s + 15.3·49-s − 6.83·53-s + 5.20·55-s + 2.92·59-s + 2·61-s − 22.0·65-s − 10.8·67-s + 9.32·71-s + 0.331·73-s − 7.69·77-s − 0.293·79-s − 9.49·83-s + ⋯
L(s)  = 1  − 1.43·5-s + 1.78·7-s − 0.490·11-s + 1.91·13-s + 1.70·17-s − 0.138·19-s + 0.770·23-s + 1.04·25-s − 1.36·29-s − 0.987·31-s − 2.55·35-s + 0.164·37-s + 0.0196·41-s + 1.78·43-s + 1.36·47-s + 2.19·49-s − 0.938·53-s + 0.701·55-s + 0.381·59-s + 0.256·61-s − 2.73·65-s − 1.32·67-s + 1.10·71-s + 0.0387·73-s − 0.876·77-s − 0.0330·79-s − 1.04·83-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 5328 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5328 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(5328\)    =    \(2^{4} \cdot 3^{2} \cdot 37\)
Sign: $1$
Analytic conductor: \(42.5442\)
Root analytic conductor: \(6.52259\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 5328,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.165940943\)
\(L(\frac12)\) \(\approx\) \(2.165940943\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
37 \( 1 - T \)
good5 \( 1 + 3.19T + 5T^{2} \)
7 \( 1 - 4.72T + 7T^{2} \)
11 \( 1 + 1.62T + 11T^{2} \)
13 \( 1 - 6.89T + 13T^{2} \)
17 \( 1 - 7.02T + 17T^{2} \)
19 \( 1 + 0.601T + 19T^{2} \)
23 \( 1 - 3.69T + 23T^{2} \)
29 \( 1 + 7.32T + 29T^{2} \)
31 \( 1 + 5.49T + 31T^{2} \)
41 \( 1 - 0.125T + 41T^{2} \)
43 \( 1 - 11.6T + 43T^{2} \)
47 \( 1 - 9.32T + 47T^{2} \)
53 \( 1 + 6.83T + 53T^{2} \)
59 \( 1 - 2.92T + 59T^{2} \)
61 \( 1 - 2T + 61T^{2} \)
67 \( 1 + 10.8T + 67T^{2} \)
71 \( 1 - 9.32T + 71T^{2} \)
73 \( 1 - 0.331T + 73T^{2} \)
79 \( 1 + 0.293T + 79T^{2} \)
83 \( 1 + 9.49T + 83T^{2} \)
89 \( 1 + 10.9T + 89T^{2} \)
97 \( 1 + 7.79T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.035024991008844600509997774832, −7.69656863561417888274375421892, −7.09792421853667390817571699253, −5.67973470696915410447778742421, −5.43837250513351483724616601061, −4.26597366356458862133409711736, −3.90630270786154745076941752352, −3.02122996995458460991540096637, −1.63683927067672268813227848347, −0.873401799984507647109528844188, 0.873401799984507647109528844188, 1.63683927067672268813227848347, 3.02122996995458460991540096637, 3.90630270786154745076941752352, 4.26597366356458862133409711736, 5.43837250513351483724616601061, 5.67973470696915410447778742421, 7.09792421853667390817571699253, 7.69656863561417888274375421892, 8.035024991008844600509997774832

Graph of the $Z$-function along the critical line