L(s) = 1 | − 0.801·3-s + 2.80i·5-s + 2.69i·7-s − 2.35·9-s + 1.19i·11-s − 2.24i·15-s − 1.13·17-s + 1.93i·19-s − 2.15i·21-s − 4.60·23-s − 2.85·25-s + 4.29·27-s − 7.89·29-s + 5.89i·31-s − 0.960i·33-s + ⋯ |
L(s) = 1 | − 0.462·3-s + 1.25i·5-s + 1.01i·7-s − 0.785·9-s + 0.361i·11-s − 0.580i·15-s − 0.275·17-s + 0.444i·19-s − 0.471i·21-s − 0.959·23-s − 0.570·25-s + 0.826·27-s − 1.46·29-s + 1.05i·31-s − 0.167i·33-s + ⋯ |
Λ(s)=(=(2704s/2ΓC(s)L(s)(−0.691+0.722i)Λ(2−s)
Λ(s)=(=(2704s/2ΓC(s+1/2)L(s)(−0.691+0.722i)Λ(1−s)
Degree: |
2 |
Conductor: |
2704
= 24⋅132
|
Sign: |
−0.691+0.722i
|
Analytic conductor: |
21.5915 |
Root analytic conductor: |
4.64667 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ2704(337,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 2704, ( :1/2), −0.691+0.722i)
|
Particular Values
L(1) |
≈ |
0.4290541061 |
L(21) |
≈ |
0.4290541061 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 13 | 1 |
good | 3 | 1+0.801T+3T2 |
| 5 | 1−2.80iT−5T2 |
| 7 | 1−2.69iT−7T2 |
| 11 | 1−1.19iT−11T2 |
| 17 | 1+1.13T+17T2 |
| 19 | 1−1.93iT−19T2 |
| 23 | 1+4.60T+23T2 |
| 29 | 1+7.89T+29T2 |
| 31 | 1−5.89iT−31T2 |
| 37 | 1−0.951iT−37T2 |
| 41 | 1+3.31iT−41T2 |
| 43 | 1−7.15T+43T2 |
| 47 | 1−7.69iT−47T2 |
| 53 | 1−5.87T+53T2 |
| 59 | 1−0.0120iT−59T2 |
| 61 | 1+8.03T+61T2 |
| 67 | 1+9.25iT−67T2 |
| 71 | 1+13.7iT−71T2 |
| 73 | 1−12.8iT−73T2 |
| 79 | 1+0.807T+79T2 |
| 83 | 1+16.3iT−83T2 |
| 89 | 1+14.7iT−89T2 |
| 97 | 1+3.13iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.269871307609507449740371753596, −8.621897782933711997817992655171, −7.68226564481593691482252506460, −6.99164598597475051673924411488, −5.96712759408738436391867512425, −5.85541323501805077793668960039, −4.71867831282440675094683073189, −3.54225100841430409835749217595, −2.74298772545006303586897203845, −1.93042924712915159414699905062,
0.16409153340135742236739215088, 1.05592478915976210761685630646, 2.39963553934197007333555456459, 3.79483620084616979302901160719, 4.36109758089093135056752433391, 5.35792647971785701007579892626, 5.82322123255568854837122643666, 6.82294917722149886339658378389, 7.70655194517745680825838710719, 8.375834877940717778515086041323