Properties

Label 2-52e2-13.12-c1-0-3
Degree $2$
Conductor $2704$
Sign $-0.691 + 0.722i$
Analytic cond. $21.5915$
Root an. cond. $4.64667$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 0.801·3-s + 2.80i·5-s + 2.69i·7-s − 2.35·9-s + 1.19i·11-s − 2.24i·15-s − 1.13·17-s + 1.93i·19-s − 2.15i·21-s − 4.60·23-s − 2.85·25-s + 4.29·27-s − 7.89·29-s + 5.89i·31-s − 0.960i·33-s + ⋯
L(s)  = 1  − 0.462·3-s + 1.25i·5-s + 1.01i·7-s − 0.785·9-s + 0.361i·11-s − 0.580i·15-s − 0.275·17-s + 0.444i·19-s − 0.471i·21-s − 0.959·23-s − 0.570·25-s + 0.826·27-s − 1.46·29-s + 1.05i·31-s − 0.167i·33-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2704 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.691 + 0.722i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2704 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.691 + 0.722i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2704\)    =    \(2^{4} \cdot 13^{2}\)
Sign: $-0.691 + 0.722i$
Analytic conductor: \(21.5915\)
Root analytic conductor: \(4.64667\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{2704} (337, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 2704,\ (\ :1/2),\ -0.691 + 0.722i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.4290541061\)
\(L(\frac12)\) \(\approx\) \(0.4290541061\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
13 \( 1 \)
good3 \( 1 + 0.801T + 3T^{2} \)
5 \( 1 - 2.80iT - 5T^{2} \)
7 \( 1 - 2.69iT - 7T^{2} \)
11 \( 1 - 1.19iT - 11T^{2} \)
17 \( 1 + 1.13T + 17T^{2} \)
19 \( 1 - 1.93iT - 19T^{2} \)
23 \( 1 + 4.60T + 23T^{2} \)
29 \( 1 + 7.89T + 29T^{2} \)
31 \( 1 - 5.89iT - 31T^{2} \)
37 \( 1 - 0.951iT - 37T^{2} \)
41 \( 1 + 3.31iT - 41T^{2} \)
43 \( 1 - 7.15T + 43T^{2} \)
47 \( 1 - 7.69iT - 47T^{2} \)
53 \( 1 - 5.87T + 53T^{2} \)
59 \( 1 - 0.0120iT - 59T^{2} \)
61 \( 1 + 8.03T + 61T^{2} \)
67 \( 1 + 9.25iT - 67T^{2} \)
71 \( 1 + 13.7iT - 71T^{2} \)
73 \( 1 - 12.8iT - 73T^{2} \)
79 \( 1 + 0.807T + 79T^{2} \)
83 \( 1 + 16.3iT - 83T^{2} \)
89 \( 1 + 14.7iT - 89T^{2} \)
97 \( 1 + 3.13iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.269871307609507449740371753596, −8.621897782933711997817992655171, −7.68226564481593691482252506460, −6.99164598597475051673924411488, −5.96712759408738436391867512425, −5.85541323501805077793668960039, −4.71867831282440675094683073189, −3.54225100841430409835749217595, −2.74298772545006303586897203845, −1.93042924712915159414699905062, 0.16409153340135742236739215088, 1.05592478915976210761685630646, 2.39963553934197007333555456459, 3.79483620084616979302901160719, 4.36109758089093135056752433391, 5.35792647971785701007579892626, 5.82322123255568854837122643666, 6.82294917722149886339658378389, 7.70655194517745680825838710719, 8.375834877940717778515086041323

Graph of the $Z$-function along the critical line