L(s) = 1 | + (−1.5 + 2.59i)5-s + (1.5 + 2.59i)11-s + (−0.5 + 0.866i)13-s + 6·17-s + 4·19-s + (−1.5 + 2.59i)23-s + (−2 − 3.46i)25-s + (1.5 + 2.59i)29-s + (2.5 − 4.33i)31-s + 2·37-s + (−1.5 + 2.59i)41-s + (0.5 + 0.866i)43-s + (4.5 + 7.79i)47-s + 6·53-s − 9·55-s + ⋯ |
L(s) = 1 | + (−0.670 + 1.16i)5-s + (0.452 + 0.783i)11-s + (−0.138 + 0.240i)13-s + 1.45·17-s + 0.917·19-s + (−0.312 + 0.541i)23-s + (−0.400 − 0.692i)25-s + (0.278 + 0.482i)29-s + (0.449 − 0.777i)31-s + 0.328·37-s + (−0.234 + 0.405i)41-s + (0.0762 + 0.132i)43-s + (0.656 + 1.13i)47-s + 0.824·53-s − 1.21·55-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 5292 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.173 - 0.984i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5292 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.173 - 0.984i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.821892363\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.821892363\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 7 | \( 1 \) |
good | 5 | \( 1 + (1.5 - 2.59i)T + (-2.5 - 4.33i)T^{2} \) |
| 11 | \( 1 + (-1.5 - 2.59i)T + (-5.5 + 9.52i)T^{2} \) |
| 13 | \( 1 + (0.5 - 0.866i)T + (-6.5 - 11.2i)T^{2} \) |
| 17 | \( 1 - 6T + 17T^{2} \) |
| 19 | \( 1 - 4T + 19T^{2} \) |
| 23 | \( 1 + (1.5 - 2.59i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (-1.5 - 2.59i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + (-2.5 + 4.33i)T + (-15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 - 2T + 37T^{2} \) |
| 41 | \( 1 + (1.5 - 2.59i)T + (-20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (-0.5 - 0.866i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + (-4.5 - 7.79i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 - 6T + 53T^{2} \) |
| 59 | \( 1 + (-1.5 + 2.59i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (6.5 + 11.2i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (-3.5 + 6.06i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 - 12T + 71T^{2} \) |
| 73 | \( 1 - 10T + 73T^{2} \) |
| 79 | \( 1 + (5.5 + 9.52i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + (-4.5 - 7.79i)T + (-41.5 + 71.8i)T^{2} \) |
| 89 | \( 1 - 6T + 89T^{2} \) |
| 97 | \( 1 + (-5.5 - 9.52i)T + (-48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−7.932039095754783341348644935743, −7.79541603452542223006465933987, −6.99457691377863456282227520066, −6.42536399995803981029179137949, −5.52876379069087807078023722543, −4.67577952092098257811519411321, −3.72159708044528957798997012691, −3.24035441898331321716179609359, −2.28115010444354823183467351754, −1.08333234808291620716377415740,
0.62607065710655954729249065817, 1.23103351585545780779465793219, 2.69756767146503763468751867304, 3.62502513105806412459837991532, 4.20637727672175029854184478402, 5.23274886483859122615383116607, 5.56182083340702673658634069811, 6.57549982340142569083174315161, 7.46253276401390736968909661942, 8.105890648688986281629505052324