Properties

Label 2-528-44.43-c1-0-3
Degree 22
Conductor 528528
Sign 0.07910.996i-0.0791 - 0.996i
Analytic cond. 4.216104.21610
Root an. cond. 2.053312.05331
Motivic weight 11
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + i·3-s + 2.73·5-s − 5.13·7-s − 9-s + (1.88 + 2.73i)11-s + 5.13i·13-s + 2.73i·15-s + 3.76i·17-s + 3.76·19-s − 5.13i·21-s + 1.26i·23-s + 2.46·25-s i·27-s + 2i·31-s + (−2.73 + 1.88i)33-s + ⋯
L(s)  = 1  + 0.577i·3-s + 1.22·5-s − 1.94·7-s − 0.333·9-s + (0.566 + 0.823i)11-s + 1.42i·13-s + 0.705i·15-s + 0.912i·17-s + 0.862·19-s − 1.12i·21-s + 0.264i·23-s + 0.492·25-s − 0.192i·27-s + 0.359i·31-s + (−0.475 + 0.327i)33-s + ⋯

Functional equation

Λ(s)=(528s/2ΓC(s)L(s)=((0.07910.996i)Λ(2s)\begin{aligned}\Lambda(s)=\mathstrut & 528 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.0791 - 0.996i)\, \overline{\Lambda}(2-s) \end{aligned}
Λ(s)=(528s/2ΓC(s+1/2)L(s)=((0.07910.996i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 528 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.0791 - 0.996i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 22
Conductor: 528528    =    243112^{4} \cdot 3 \cdot 11
Sign: 0.07910.996i-0.0791 - 0.996i
Analytic conductor: 4.216104.21610
Root analytic conductor: 2.053312.05331
Motivic weight: 11
Rational: no
Arithmetic: yes
Character: χ528(175,)\chi_{528} (175, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (2, 528, ( :1/2), 0.07910.996i)(2,\ 528,\ (\ :1/2),\ -0.0791 - 0.996i)

Particular Values

L(1)L(1) \approx 0.903446+0.978003i0.903446 + 0.978003i
L(12)L(\frac12) \approx 0.903446+0.978003i0.903446 + 0.978003i
L(32)L(\frac{3}{2}) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad2 1 1
3 1iT 1 - iT
11 1+(1.882.73i)T 1 + (-1.88 - 2.73i)T
good5 12.73T+5T2 1 - 2.73T + 5T^{2}
7 1+5.13T+7T2 1 + 5.13T + 7T^{2}
13 15.13iT13T2 1 - 5.13iT - 13T^{2}
17 13.76iT17T2 1 - 3.76iT - 17T^{2}
19 13.76T+19T2 1 - 3.76T + 19T^{2}
23 11.26iT23T2 1 - 1.26iT - 23T^{2}
29 129T2 1 - 29T^{2}
31 12iT31T2 1 - 2iT - 31T^{2}
37 10.535T+37T2 1 - 0.535T + 37T^{2}
41 1+10.2iT41T2 1 + 10.2iT - 41T^{2}
43 13.76T+43T2 1 - 3.76T + 43T^{2}
47 14.19iT47T2 1 - 4.19iT - 47T^{2}
53 1+10.7T+53T2 1 + 10.7T + 53T^{2}
59 19.46iT59T2 1 - 9.46iT - 59T^{2}
61 1+2.38iT61T2 1 + 2.38iT - 61T^{2}
67 1+10.3iT67T2 1 + 10.3iT - 67T^{2}
71 1+10.7iT71T2 1 + 10.7iT - 71T^{2}
73 110.2iT73T2 1 - 10.2iT - 73T^{2}
79 15.13T+79T2 1 - 5.13T + 79T^{2}
83 110.2T+83T2 1 - 10.2T + 83T^{2}
89 1+10.3T+89T2 1 + 10.3T + 89T^{2}
97 15.46T+97T2 1 - 5.46T + 97T^{2}
show more
show less
   L(s)=p j=12(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−10.80500661928748324966273187158, −9.861901780650944139559865929486, −9.507081394465165023006283540260, −8.973703217072276653309184726314, −7.15569410309150290903651844771, −6.39365909006246876636569323092, −5.72827483457004752827191862035, −4.31501378893847114808764717566, −3.29151701807960160693323846979, −1.92986857107540914392678257284, 0.78097426748412010368823622902, 2.68928646499871485696280740935, 3.36546361051797070805971778504, 5.39255675635810422968123581218, 6.11176204638169074275295459624, 6.69204670312245858379595777662, 7.85385292366142228116700352198, 9.142906844389981402838589704953, 9.657246507533088444846044839782, 10.38143953300174778915351796238

Graph of the ZZ-function along the critical line