L(s) = 1 | + i·3-s + 2.73·5-s − 5.13·7-s − 9-s + (1.88 + 2.73i)11-s + 5.13i·13-s + 2.73i·15-s + 3.76i·17-s + 3.76·19-s − 5.13i·21-s + 1.26i·23-s + 2.46·25-s − i·27-s + 2i·31-s + (−2.73 + 1.88i)33-s + ⋯ |
L(s) = 1 | + 0.577i·3-s + 1.22·5-s − 1.94·7-s − 0.333·9-s + (0.566 + 0.823i)11-s + 1.42i·13-s + 0.705i·15-s + 0.912i·17-s + 0.862·19-s − 1.12i·21-s + 0.264i·23-s + 0.492·25-s − 0.192i·27-s + 0.359i·31-s + (−0.475 + 0.327i)33-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 528 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.0791 - 0.996i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 528 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.0791 - 0.996i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.903446 + 0.978003i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.903446 + 0.978003i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 - iT \) |
| 11 | \( 1 + (-1.88 - 2.73i)T \) |
good | 5 | \( 1 - 2.73T + 5T^{2} \) |
| 7 | \( 1 + 5.13T + 7T^{2} \) |
| 13 | \( 1 - 5.13iT - 13T^{2} \) |
| 17 | \( 1 - 3.76iT - 17T^{2} \) |
| 19 | \( 1 - 3.76T + 19T^{2} \) |
| 23 | \( 1 - 1.26iT - 23T^{2} \) |
| 29 | \( 1 - 29T^{2} \) |
| 31 | \( 1 - 2iT - 31T^{2} \) |
| 37 | \( 1 - 0.535T + 37T^{2} \) |
| 41 | \( 1 + 10.2iT - 41T^{2} \) |
| 43 | \( 1 - 3.76T + 43T^{2} \) |
| 47 | \( 1 - 4.19iT - 47T^{2} \) |
| 53 | \( 1 + 10.7T + 53T^{2} \) |
| 59 | \( 1 - 9.46iT - 59T^{2} \) |
| 61 | \( 1 + 2.38iT - 61T^{2} \) |
| 67 | \( 1 + 10.3iT - 67T^{2} \) |
| 71 | \( 1 + 10.7iT - 71T^{2} \) |
| 73 | \( 1 - 10.2iT - 73T^{2} \) |
| 79 | \( 1 - 5.13T + 79T^{2} \) |
| 83 | \( 1 - 10.2T + 83T^{2} \) |
| 89 | \( 1 + 10.3T + 89T^{2} \) |
| 97 | \( 1 - 5.46T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.80500661928748324966273187158, −9.861901780650944139559865929486, −9.507081394465165023006283540260, −8.973703217072276653309184726314, −7.15569410309150290903651844771, −6.39365909006246876636569323092, −5.72827483457004752827191862035, −4.31501378893847114808764717566, −3.29151701807960160693323846979, −1.92986857107540914392678257284,
0.78097426748412010368823622902, 2.68928646499871485696280740935, 3.36546361051797070805971778504, 5.39255675635810422968123581218, 6.11176204638169074275295459624, 6.69204670312245858379595777662, 7.85385292366142228116700352198, 9.142906844389981402838589704953, 9.657246507533088444846044839782, 10.38143953300174778915351796238