L(s) = 1 | + i·3-s + 2.73·5-s − 5.13·7-s − 9-s + (1.88 + 2.73i)11-s + 5.13i·13-s + 2.73i·15-s + 3.76i·17-s + 3.76·19-s − 5.13i·21-s + 1.26i·23-s + 2.46·25-s − i·27-s + 2i·31-s + (−2.73 + 1.88i)33-s + ⋯ |
L(s) = 1 | + 0.577i·3-s + 1.22·5-s − 1.94·7-s − 0.333·9-s + (0.566 + 0.823i)11-s + 1.42i·13-s + 0.705i·15-s + 0.912i·17-s + 0.862·19-s − 1.12i·21-s + 0.264i·23-s + 0.492·25-s − 0.192i·27-s + 0.359i·31-s + (−0.475 + 0.327i)33-s + ⋯ |
Λ(s)=(=(528s/2ΓC(s)L(s)(−0.0791−0.996i)Λ(2−s)
Λ(s)=(=(528s/2ΓC(s+1/2)L(s)(−0.0791−0.996i)Λ(1−s)
Degree: |
2 |
Conductor: |
528
= 24⋅3⋅11
|
Sign: |
−0.0791−0.996i
|
Analytic conductor: |
4.21610 |
Root analytic conductor: |
2.05331 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ528(175,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 528, ( :1/2), −0.0791−0.996i)
|
Particular Values
L(1) |
≈ |
0.903446+0.978003i |
L(21) |
≈ |
0.903446+0.978003i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1−iT |
| 11 | 1+(−1.88−2.73i)T |
good | 5 | 1−2.73T+5T2 |
| 7 | 1+5.13T+7T2 |
| 13 | 1−5.13iT−13T2 |
| 17 | 1−3.76iT−17T2 |
| 19 | 1−3.76T+19T2 |
| 23 | 1−1.26iT−23T2 |
| 29 | 1−29T2 |
| 31 | 1−2iT−31T2 |
| 37 | 1−0.535T+37T2 |
| 41 | 1+10.2iT−41T2 |
| 43 | 1−3.76T+43T2 |
| 47 | 1−4.19iT−47T2 |
| 53 | 1+10.7T+53T2 |
| 59 | 1−9.46iT−59T2 |
| 61 | 1+2.38iT−61T2 |
| 67 | 1+10.3iT−67T2 |
| 71 | 1+10.7iT−71T2 |
| 73 | 1−10.2iT−73T2 |
| 79 | 1−5.13T+79T2 |
| 83 | 1−10.2T+83T2 |
| 89 | 1+10.3T+89T2 |
| 97 | 1−5.46T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.80500661928748324966273187158, −9.861901780650944139559865929486, −9.507081394465165023006283540260, −8.973703217072276653309184726314, −7.15569410309150290903651844771, −6.39365909006246876636569323092, −5.72827483457004752827191862035, −4.31501378893847114808764717566, −3.29151701807960160693323846979, −1.92986857107540914392678257284,
0.78097426748412010368823622902, 2.68928646499871485696280740935, 3.36546361051797070805971778504, 5.39255675635810422968123581218, 6.11176204638169074275295459624, 6.69204670312245858379595777662, 7.85385292366142228116700352198, 9.142906844389981402838589704953, 9.657246507533088444846044839782, 10.38143953300174778915351796238