L(s) = 1 | + i·2-s + 9i·3-s + 31·4-s − 9·6-s − 49i·7-s + 63i·8-s − 81·9-s − 340·11-s + 279i·12-s − 454i·13-s + 49·14-s + 929·16-s − 798i·17-s − 81i·18-s − 892·19-s + ⋯ |
L(s) = 1 | + 0.176i·2-s + 0.577i·3-s + 0.968·4-s − 0.102·6-s − 0.377i·7-s + 0.348i·8-s − 0.333·9-s − 0.847·11-s + 0.559i·12-s − 0.745i·13-s + 0.0668·14-s + 0.907·16-s − 0.669i·17-s − 0.0589i·18-s − 0.566·19-s + ⋯ |
Λ(s)=(=(525s/2ΓC(s)L(s)(0.447−0.894i)Λ(6−s)
Λ(s)=(=(525s/2ΓC(s+5/2)L(s)(0.447−0.894i)Λ(1−s)
Degree: |
2 |
Conductor: |
525
= 3⋅52⋅7
|
Sign: |
0.447−0.894i
|
Analytic conductor: |
84.2015 |
Root analytic conductor: |
9.17613 |
Motivic weight: |
5 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ525(274,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 525, ( :5/2), 0.447−0.894i)
|
Particular Values
L(3) |
≈ |
2.578964182 |
L(21) |
≈ |
2.578964182 |
L(27) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1−9iT |
| 5 | 1 |
| 7 | 1+49iT |
good | 2 | 1−iT−32T2 |
| 11 | 1+340T+1.61e5T2 |
| 13 | 1+454iT−3.71e5T2 |
| 17 | 1+798iT−1.41e6T2 |
| 19 | 1+892T+2.47e6T2 |
| 23 | 1−3.19e3iT−6.43e6T2 |
| 29 | 1−8.24e3T+2.05e7T2 |
| 31 | 1+2.49e3T+2.86e7T2 |
| 37 | 1−9.79e3iT−6.93e7T2 |
| 41 | 1−1.98e4T+1.15e8T2 |
| 43 | 1−1.72e4iT−1.47e8T2 |
| 47 | 1−8.92e3iT−2.29e8T2 |
| 53 | 1+150iT−4.18e8T2 |
| 59 | 1−4.23e4T+7.14e8T2 |
| 61 | 1−1.47e4T+8.44e8T2 |
| 67 | 1+1.67e3iT−1.35e9T2 |
| 71 | 1−1.45e4T+1.80e9T2 |
| 73 | 1+7.83e4iT−2.07e9T2 |
| 79 | 1−2.27e3T+3.07e9T2 |
| 83 | 1−3.77e4iT−3.93e9T2 |
| 89 | 1−1.17e5T+5.58e9T2 |
| 97 | 1−1.00e4iT−8.58e9T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.34855154126651163910116529711, −9.539930802938821547542978563384, −8.201232510173380377435456814628, −7.62301333734901828672932142925, −6.55510443540717000154773896784, −5.60513849393895086389154288704, −4.68372193317830467201781981675, −3.28352992719996725955775250561, −2.49337970870526630662315142631, −0.937123339118542102148558613541,
0.66932771822843891191417486954, 2.07527145332434108218637031657, 2.60346247328115620667975010029, 4.05388294609623167481252015840, 5.47555024839076003730230663124, 6.38965058811131032132936348056, 7.07192354727656082623212264657, 8.093359423733256485403281274681, 8.841570237401453904916397195269, 10.21877312442153472369271278421