L(s) = 1 | + i·2-s + 9i·3-s + 31·4-s − 9·6-s − 49i·7-s + 63i·8-s − 81·9-s − 340·11-s + 279i·12-s − 454i·13-s + 49·14-s + 929·16-s − 798i·17-s − 81i·18-s − 892·19-s + ⋯ |
L(s) = 1 | + 0.176i·2-s + 0.577i·3-s + 0.968·4-s − 0.102·6-s − 0.377i·7-s + 0.348i·8-s − 0.333·9-s − 0.847·11-s + 0.559i·12-s − 0.745i·13-s + 0.0668·14-s + 0.907·16-s − 0.669i·17-s − 0.0589i·18-s − 0.566·19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 525 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.447 - 0.894i)\, \overline{\Lambda}(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 525 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & (0.447 - 0.894i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(3)\) |
\(\approx\) |
\(2.578964182\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.578964182\) |
\(L(\frac{7}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 - 9iT \) |
| 5 | \( 1 \) |
| 7 | \( 1 + 49iT \) |
good | 2 | \( 1 - iT - 32T^{2} \) |
| 11 | \( 1 + 340T + 1.61e5T^{2} \) |
| 13 | \( 1 + 454iT - 3.71e5T^{2} \) |
| 17 | \( 1 + 798iT - 1.41e6T^{2} \) |
| 19 | \( 1 + 892T + 2.47e6T^{2} \) |
| 23 | \( 1 - 3.19e3iT - 6.43e6T^{2} \) |
| 29 | \( 1 - 8.24e3T + 2.05e7T^{2} \) |
| 31 | \( 1 + 2.49e3T + 2.86e7T^{2} \) |
| 37 | \( 1 - 9.79e3iT - 6.93e7T^{2} \) |
| 41 | \( 1 - 1.98e4T + 1.15e8T^{2} \) |
| 43 | \( 1 - 1.72e4iT - 1.47e8T^{2} \) |
| 47 | \( 1 - 8.92e3iT - 2.29e8T^{2} \) |
| 53 | \( 1 + 150iT - 4.18e8T^{2} \) |
| 59 | \( 1 - 4.23e4T + 7.14e8T^{2} \) |
| 61 | \( 1 - 1.47e4T + 8.44e8T^{2} \) |
| 67 | \( 1 + 1.67e3iT - 1.35e9T^{2} \) |
| 71 | \( 1 - 1.45e4T + 1.80e9T^{2} \) |
| 73 | \( 1 + 7.83e4iT - 2.07e9T^{2} \) |
| 79 | \( 1 - 2.27e3T + 3.07e9T^{2} \) |
| 83 | \( 1 - 3.77e4iT - 3.93e9T^{2} \) |
| 89 | \( 1 - 1.17e5T + 5.58e9T^{2} \) |
| 97 | \( 1 - 1.00e4iT - 8.58e9T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.34855154126651163910116529711, −9.539930802938821547542978563384, −8.201232510173380377435456814628, −7.62301333734901828672932142925, −6.55510443540717000154773896784, −5.60513849393895086389154288704, −4.68372193317830467201781981675, −3.28352992719996725955775250561, −2.49337970870526630662315142631, −0.937123339118542102148558613541,
0.66932771822843891191417486954, 2.07527145332434108218637031657, 2.60346247328115620667975010029, 4.05388294609623167481252015840, 5.47555024839076003730230663124, 6.38965058811131032132936348056, 7.07192354727656082623212264657, 8.093359423733256485403281274681, 8.841570237401453904916397195269, 10.21877312442153472369271278421