L(s) = 1 | + 5i·2-s + 3i·3-s − 17·4-s − 15·6-s + 7i·7-s − 45i·8-s − 9·9-s + 12·11-s − 51i·12-s − 30i·13-s − 35·14-s + 89·16-s − 134i·17-s − 45i·18-s + 92·19-s + ⋯ |
L(s) = 1 | + 1.76i·2-s + 0.577i·3-s − 2.12·4-s − 1.02·6-s + 0.377i·7-s − 1.98i·8-s − 0.333·9-s + 0.328·11-s − 1.22i·12-s − 0.640i·13-s − 0.668·14-s + 1.39·16-s − 1.91i·17-s − 0.589i·18-s + 1.11·19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 525 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.447 - 0.894i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 525 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (0.447 - 0.894i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(1.166728381\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.166728381\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 - 3iT \) |
| 5 | \( 1 \) |
| 7 | \( 1 - 7iT \) |
good | 2 | \( 1 - 5iT - 8T^{2} \) |
| 11 | \( 1 - 12T + 1.33e3T^{2} \) |
| 13 | \( 1 + 30iT - 2.19e3T^{2} \) |
| 17 | \( 1 + 134iT - 4.91e3T^{2} \) |
| 19 | \( 1 - 92T + 6.85e3T^{2} \) |
| 23 | \( 1 + 112iT - 1.21e4T^{2} \) |
| 29 | \( 1 - 58T + 2.43e4T^{2} \) |
| 31 | \( 1 + 224T + 2.97e4T^{2} \) |
| 37 | \( 1 + 146iT - 5.06e4T^{2} \) |
| 41 | \( 1 - 18T + 6.89e4T^{2} \) |
| 43 | \( 1 + 340iT - 7.95e4T^{2} \) |
| 47 | \( 1 - 208iT - 1.03e5T^{2} \) |
| 53 | \( 1 - 754iT - 1.48e5T^{2} \) |
| 59 | \( 1 + 380T + 2.05e5T^{2} \) |
| 61 | \( 1 - 718T + 2.26e5T^{2} \) |
| 67 | \( 1 - 412iT - 3.00e5T^{2} \) |
| 71 | \( 1 + 960T + 3.57e5T^{2} \) |
| 73 | \( 1 + 1.06e3iT - 3.89e5T^{2} \) |
| 79 | \( 1 + 896T + 4.93e5T^{2} \) |
| 83 | \( 1 + 436iT - 5.71e5T^{2} \) |
| 89 | \( 1 - 1.03e3T + 7.04e5T^{2} \) |
| 97 | \( 1 + 702iT - 9.12e5T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.25933895455305968310546091819, −9.227145245004230714359924725357, −8.887350438553412334698872153535, −7.66615696543583308656028630782, −7.08702854628003906995801771606, −5.88921960399178111643206010912, −5.24910831615715771093284791001, −4.38375148537717703945141083609, −2.97792479975793590736842334955, −0.40926267412199916161492296753,
1.18480633670555135579211835896, 1.89776166478418392284370755303, 3.32461736289031074119610053593, 4.04907078036679444790608634026, 5.34578897225955341319423305355, 6.63258564425627448251898906408, 7.85908873739547548724140952246, 8.809394589780622704061818389405, 9.674178732454685000049996961408, 10.42595755866739323090356494508