L(s) = 1 | + 5i·2-s + 3i·3-s − 17·4-s − 15·6-s + 7i·7-s − 45i·8-s − 9·9-s + 12·11-s − 51i·12-s − 30i·13-s − 35·14-s + 89·16-s − 134i·17-s − 45i·18-s + 92·19-s + ⋯ |
L(s) = 1 | + 1.76i·2-s + 0.577i·3-s − 2.12·4-s − 1.02·6-s + 0.377i·7-s − 1.98i·8-s − 0.333·9-s + 0.328·11-s − 1.22i·12-s − 0.640i·13-s − 0.668·14-s + 1.39·16-s − 1.91i·17-s − 0.589i·18-s + 1.11·19-s + ⋯ |
Λ(s)=(=(525s/2ΓC(s)L(s)(0.447−0.894i)Λ(4−s)
Λ(s)=(=(525s/2ΓC(s+3/2)L(s)(0.447−0.894i)Λ(1−s)
Degree: |
2 |
Conductor: |
525
= 3⋅52⋅7
|
Sign: |
0.447−0.894i
|
Analytic conductor: |
30.9760 |
Root analytic conductor: |
5.56560 |
Motivic weight: |
3 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ525(274,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 525, ( :3/2), 0.447−0.894i)
|
Particular Values
L(2) |
≈ |
1.166728381 |
L(21) |
≈ |
1.166728381 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1−3iT |
| 5 | 1 |
| 7 | 1−7iT |
good | 2 | 1−5iT−8T2 |
| 11 | 1−12T+1.33e3T2 |
| 13 | 1+30iT−2.19e3T2 |
| 17 | 1+134iT−4.91e3T2 |
| 19 | 1−92T+6.85e3T2 |
| 23 | 1+112iT−1.21e4T2 |
| 29 | 1−58T+2.43e4T2 |
| 31 | 1+224T+2.97e4T2 |
| 37 | 1+146iT−5.06e4T2 |
| 41 | 1−18T+6.89e4T2 |
| 43 | 1+340iT−7.95e4T2 |
| 47 | 1−208iT−1.03e5T2 |
| 53 | 1−754iT−1.48e5T2 |
| 59 | 1+380T+2.05e5T2 |
| 61 | 1−718T+2.26e5T2 |
| 67 | 1−412iT−3.00e5T2 |
| 71 | 1+960T+3.57e5T2 |
| 73 | 1+1.06e3iT−3.89e5T2 |
| 79 | 1+896T+4.93e5T2 |
| 83 | 1+436iT−5.71e5T2 |
| 89 | 1−1.03e3T+7.04e5T2 |
| 97 | 1+702iT−9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.25933895455305968310546091819, −9.227145245004230714359924725357, −8.887350438553412334698872153535, −7.66615696543583308656028630782, −7.08702854628003906995801771606, −5.88921960399178111643206010912, −5.24910831615715771093284791001, −4.38375148537717703945141083609, −2.97792479975793590736842334955, −0.40926267412199916161492296753,
1.18480633670555135579211835896, 1.89776166478418392284370755303, 3.32461736289031074119610053593, 4.04907078036679444790608634026, 5.34578897225955341319423305355, 6.63258564425627448251898906408, 7.85908873739547548724140952246, 8.809394589780622704061818389405, 9.674178732454685000049996961408, 10.42595755866739323090356494508