L(s) = 1 | + 4.53i·2-s − 3i·3-s − 12.5·4-s + 13.5·6-s − 7i·7-s − 20.5i·8-s − 9·9-s − 19.0·11-s + 37.5i·12-s + 2.93i·13-s + 31.7·14-s − 7.21·16-s − 6.49i·17-s − 40.7i·18-s + 5.43·19-s + ⋯ |
L(s) = 1 | + 1.60i·2-s − 0.577i·3-s − 1.56·4-s + 0.924·6-s − 0.377i·7-s − 0.907i·8-s − 0.333·9-s − 0.522·11-s + 0.904i·12-s + 0.0626i·13-s + 0.605·14-s − 0.112·16-s − 0.0927i·17-s − 0.533i·18-s + 0.0656·19-s + ⋯ |
Λ(s)=(=(525s/2ΓC(s)L(s)(0.447−0.894i)Λ(4−s)
Λ(s)=(=(525s/2ΓC(s+3/2)L(s)(0.447−0.894i)Λ(1−s)
Degree: |
2 |
Conductor: |
525
= 3⋅52⋅7
|
Sign: |
0.447−0.894i
|
Analytic conductor: |
30.9760 |
Root analytic conductor: |
5.56560 |
Motivic weight: |
3 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ525(274,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 525, ( :3/2), 0.447−0.894i)
|
Particular Values
L(2) |
≈ |
1.595828317 |
L(21) |
≈ |
1.595828317 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+3iT |
| 5 | 1 |
| 7 | 1+7iT |
good | 2 | 1−4.53iT−8T2 |
| 11 | 1+19.0T+1.33e3T2 |
| 13 | 1−2.93iT−2.19e3T2 |
| 17 | 1+6.49iT−4.91e3T2 |
| 19 | 1−5.43T+6.85e3T2 |
| 23 | 1+49.3iT−1.21e4T2 |
| 29 | 1−291.T+2.43e4T2 |
| 31 | 1−244.T+2.97e4T2 |
| 37 | 1+193.iT−5.06e4T2 |
| 41 | 1−315.T+6.89e4T2 |
| 43 | 1−300.iT−7.95e4T2 |
| 47 | 1−86.5iT−1.03e5T2 |
| 53 | 1+509.iT−1.48e5T2 |
| 59 | 1−83.3T+2.05e5T2 |
| 61 | 1+5.25T+2.26e5T2 |
| 67 | 1−205.iT−3.00e5T2 |
| 71 | 1−1.00e3T+3.57e5T2 |
| 73 | 1−1.00e3iT−3.89e5T2 |
| 79 | 1−863.T+4.93e5T2 |
| 83 | 1+1.33e3iT−5.71e5T2 |
| 89 | 1+326.T+7.04e5T2 |
| 97 | 1−1.52e3iT−9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.45329260520514514942915328639, −9.401933122833128782539599914653, −8.301017886816017981260461214780, −7.891179616727495944599954178332, −6.85758866460490217686195210065, −6.31714700248074349796356714708, −5.24789212667538642918090425330, −4.33430164799673217844166853276, −2.62292098925399939831972819075, −0.69665451496178968429292956999,
0.868343270078126560103328904762, 2.37717022641922166950124653938, 3.16997452289445418459853478361, 4.31358716731988401315353683963, 5.15095990825133038978404529576, 6.45658335329951133032491410051, 8.016587974664946570600668043427, 8.887331437523068612966163298906, 9.757080419167479103519571713321, 10.37886639460685881227761049474