L(s) = 1 | − 4.70·2-s − 3·3-s + 14.1·4-s + 14.1·6-s − 7·7-s − 28.7·8-s + 9·9-s + 24.5·11-s − 42.3·12-s + 35.0·13-s + 32.9·14-s + 22.1·16-s + 18.4·17-s − 42.3·18-s − 67.4·19-s + 21·21-s − 115.·22-s + 145.·23-s + 86.1·24-s − 164.·26-s − 27·27-s − 98.7·28-s + 214.·29-s − 88.6·31-s + 125.·32-s − 73.7·33-s − 86.5·34-s + ⋯ |
L(s) = 1 | − 1.66·2-s − 0.577·3-s + 1.76·4-s + 0.959·6-s − 0.377·7-s − 1.26·8-s + 0.333·9-s + 0.674·11-s − 1.01·12-s + 0.747·13-s + 0.628·14-s + 0.345·16-s + 0.262·17-s − 0.554·18-s − 0.813·19-s + 0.218·21-s − 1.12·22-s + 1.32·23-s + 0.732·24-s − 1.24·26-s − 0.192·27-s − 0.666·28-s + 1.37·29-s − 0.513·31-s + 0.694·32-s − 0.389·33-s − 0.436·34-s + ⋯ |
Λ(s)=(=(525s/2ΓC(s)L(s)Λ(4−s)
Λ(s)=(=(525s/2ΓC(s+3/2)L(s)Λ(1−s)
Particular Values
L(2) |
≈ |
0.6284837598 |
L(21) |
≈ |
0.6284837598 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+3T |
| 5 | 1 |
| 7 | 1+7T |
good | 2 | 1+4.70T+8T2 |
| 11 | 1−24.5T+1.33e3T2 |
| 13 | 1−35.0T+2.19e3T2 |
| 17 | 1−18.4T+4.91e3T2 |
| 19 | 1+67.4T+6.85e3T2 |
| 23 | 1−145.T+1.21e4T2 |
| 29 | 1−214.T+2.43e4T2 |
| 31 | 1+88.6T+2.97e4T2 |
| 37 | 1+162.T+5.06e4T2 |
| 41 | 1+337.T+6.89e4T2 |
| 43 | 1+122.T+7.95e4T2 |
| 47 | 1+354.T+1.03e5T2 |
| 53 | 1+676.T+1.48e5T2 |
| 59 | 1−501.T+2.05e5T2 |
| 61 | 1+708.T+2.26e5T2 |
| 67 | 1−907.T+3.00e5T2 |
| 71 | 1−430.T+3.57e5T2 |
| 73 | 1+41.3T+3.89e5T2 |
| 79 | 1−890.T+4.93e5T2 |
| 83 | 1−1.05e3T+5.71e5T2 |
| 89 | 1−1.47e3T+7.04e5T2 |
| 97 | 1+555.T+9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.40099230716399718473465553066, −9.514644768178388124076130362418, −8.778035039137146358886626658437, −7.998355039869237451727281040568, −6.72590460896638801413599308830, −6.46481252689732640356209446685, −4.91997094614412997784028654818, −3.36926902953674733975486515684, −1.73711471114374038831705788498, −0.66305326649196143557993196086,
0.66305326649196143557993196086, 1.73711471114374038831705788498, 3.36926902953674733975486515684, 4.91997094614412997784028654818, 6.46481252689732640356209446685, 6.72590460896638801413599308830, 7.998355039869237451727281040568, 8.778035039137146358886626658437, 9.514644768178388124076130362418, 10.40099230716399718473465553066