Properties

Label 2-525-1.1-c3-0-43
Degree $2$
Conductor $525$
Sign $-1$
Analytic cond. $30.9760$
Root an. cond. $5.56560$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3·3-s − 8·4-s − 7·7-s + 9·9-s + 42·11-s − 24·12-s − 20·13-s + 64·16-s − 66·17-s + 38·19-s − 21·21-s − 12·23-s + 27·27-s + 56·28-s − 258·29-s + 146·31-s + 126·33-s − 72·36-s − 434·37-s − 60·39-s − 282·41-s − 20·43-s − 336·44-s + 72·47-s + 192·48-s + 49·49-s − 198·51-s + ⋯
L(s)  = 1  + 0.577·3-s − 4-s − 0.377·7-s + 1/3·9-s + 1.15·11-s − 0.577·12-s − 0.426·13-s + 16-s − 0.941·17-s + 0.458·19-s − 0.218·21-s − 0.108·23-s + 0.192·27-s + 0.377·28-s − 1.65·29-s + 0.845·31-s + 0.664·33-s − 1/3·36-s − 1.92·37-s − 0.246·39-s − 1.07·41-s − 0.0709·43-s − 1.15·44-s + 0.223·47-s + 0.577·48-s + 1/7·49-s − 0.543·51-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 525 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 525 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(525\)    =    \(3 \cdot 5^{2} \cdot 7\)
Sign: $-1$
Analytic conductor: \(30.9760\)
Root analytic conductor: \(5.56560\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 525,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 - p T \)
5 \( 1 \)
7 \( 1 + p T \)
good2 \( 1 + p^{3} T^{2} \)
11 \( 1 - 42 T + p^{3} T^{2} \)
13 \( 1 + 20 T + p^{3} T^{2} \)
17 \( 1 + 66 T + p^{3} T^{2} \)
19 \( 1 - 2 p T + p^{3} T^{2} \)
23 \( 1 + 12 T + p^{3} T^{2} \)
29 \( 1 + 258 T + p^{3} T^{2} \)
31 \( 1 - 146 T + p^{3} T^{2} \)
37 \( 1 + 434 T + p^{3} T^{2} \)
41 \( 1 + 282 T + p^{3} T^{2} \)
43 \( 1 + 20 T + p^{3} T^{2} \)
47 \( 1 - 72 T + p^{3} T^{2} \)
53 \( 1 + 336 T + p^{3} T^{2} \)
59 \( 1 + 360 T + p^{3} T^{2} \)
61 \( 1 + 682 T + p^{3} T^{2} \)
67 \( 1 + 812 T + p^{3} T^{2} \)
71 \( 1 - 810 T + p^{3} T^{2} \)
73 \( 1 - 124 T + p^{3} T^{2} \)
79 \( 1 - 1136 T + p^{3} T^{2} \)
83 \( 1 + 156 T + p^{3} T^{2} \)
89 \( 1 + 1038 T + p^{3} T^{2} \)
97 \( 1 + 1208 T + p^{3} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.660480682934644811494424762636, −9.198263605310083470927787310436, −8.446844434691486110679714658395, −7.36657299145429705693745425736, −6.38185322371920146910964906708, −5.10879224059252464092674021945, −4.10762185843126572820557107934, −3.26339512374771722020879159902, −1.63394024708422573519915901457, 0, 1.63394024708422573519915901457, 3.26339512374771722020879159902, 4.10762185843126572820557107934, 5.10879224059252464092674021945, 6.38185322371920146910964906708, 7.36657299145429705693745425736, 8.446844434691486110679714658395, 9.198263605310083470927787310436, 9.660480682934644811494424762636

Graph of the $Z$-function along the critical line