L(s) = 1 | − 4.53·2-s − 3·3-s + 12.5·4-s + 13.5·6-s + 7·7-s − 20.5·8-s + 9·9-s − 19.0·11-s − 37.5·12-s + 2.93·13-s − 31.7·14-s − 7.21·16-s + 6.49·17-s − 40.7·18-s − 5.43·19-s − 21·21-s + 86.3·22-s − 49.3·23-s + 61.5·24-s − 13.3·26-s − 27·27-s + 87.7·28-s − 291.·29-s + 244.·31-s + 196.·32-s + 57.1·33-s − 29.4·34-s + ⋯ |
L(s) = 1 | − 1.60·2-s − 0.577·3-s + 1.56·4-s + 0.924·6-s + 0.377·7-s − 0.907·8-s + 0.333·9-s − 0.522·11-s − 0.904·12-s + 0.0626·13-s − 0.605·14-s − 0.112·16-s + 0.0927·17-s − 0.533·18-s − 0.0656·19-s − 0.218·21-s + 0.837·22-s − 0.447·23-s + 0.523·24-s − 0.100·26-s − 0.192·27-s + 0.592·28-s − 1.86·29-s + 1.41·31-s + 1.08·32-s + 0.301·33-s − 0.148·34-s + ⋯ |
Λ(s)=(=(525s/2ΓC(s)L(s)−Λ(4−s)
Λ(s)=(=(525s/2ΓC(s+3/2)L(s)−Λ(1−s)
Particular Values
L(2) |
= |
0 |
L(21) |
= |
0 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+3T |
| 5 | 1 |
| 7 | 1−7T |
good | 2 | 1+4.53T+8T2 |
| 11 | 1+19.0T+1.33e3T2 |
| 13 | 1−2.93T+2.19e3T2 |
| 17 | 1−6.49T+4.91e3T2 |
| 19 | 1+5.43T+6.85e3T2 |
| 23 | 1+49.3T+1.21e4T2 |
| 29 | 1+291.T+2.43e4T2 |
| 31 | 1−244.T+2.97e4T2 |
| 37 | 1−193.T+5.06e4T2 |
| 41 | 1−315.T+6.89e4T2 |
| 43 | 1−300.T+7.95e4T2 |
| 47 | 1+86.5T+1.03e5T2 |
| 53 | 1+509.T+1.48e5T2 |
| 59 | 1+83.3T+2.05e5T2 |
| 61 | 1+5.25T+2.26e5T2 |
| 67 | 1+205.T+3.00e5T2 |
| 71 | 1−1.00e3T+3.57e5T2 |
| 73 | 1−1.00e3T+3.89e5T2 |
| 79 | 1+863.T+4.93e5T2 |
| 83 | 1+1.33e3T+5.71e5T2 |
| 89 | 1−326.T+7.04e5T2 |
| 97 | 1+1.52e3T+9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.866617179104076557473098780024, −9.292910589293167707581866849496, −8.117656687226005390987407264881, −7.65155649499516237211362880703, −6.58582852725826489533600907087, −5.56991007286448801804177232082, −4.28137017897688057816930304822, −2.46535011381250003962058324278, −1.22479267346348945102799469931, 0,
1.22479267346348945102799469931, 2.46535011381250003962058324278, 4.28137017897688057816930304822, 5.56991007286448801804177232082, 6.58582852725826489533600907087, 7.65155649499516237211362880703, 8.117656687226005390987407264881, 9.292910589293167707581866849496, 9.866617179104076557473098780024