L(s) = 1 | − 4.53·2-s − 3·3-s + 12.5·4-s + 13.5·6-s + 7·7-s − 20.5·8-s + 9·9-s − 19.0·11-s − 37.5·12-s + 2.93·13-s − 31.7·14-s − 7.21·16-s + 6.49·17-s − 40.7·18-s − 5.43·19-s − 21·21-s + 86.3·22-s − 49.3·23-s + 61.5·24-s − 13.3·26-s − 27·27-s + 87.7·28-s − 291.·29-s + 244.·31-s + 196.·32-s + 57.1·33-s − 29.4·34-s + ⋯ |
L(s) = 1 | − 1.60·2-s − 0.577·3-s + 1.56·4-s + 0.924·6-s + 0.377·7-s − 0.907·8-s + 0.333·9-s − 0.522·11-s − 0.904·12-s + 0.0626·13-s − 0.605·14-s − 0.112·16-s + 0.0927·17-s − 0.533·18-s − 0.0656·19-s − 0.218·21-s + 0.837·22-s − 0.447·23-s + 0.523·24-s − 0.100·26-s − 0.192·27-s + 0.592·28-s − 1.86·29-s + 1.41·31-s + 1.08·32-s + 0.301·33-s − 0.148·34-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 525 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 525 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + 3T \) |
| 5 | \( 1 \) |
| 7 | \( 1 - 7T \) |
good | 2 | \( 1 + 4.53T + 8T^{2} \) |
| 11 | \( 1 + 19.0T + 1.33e3T^{2} \) |
| 13 | \( 1 - 2.93T + 2.19e3T^{2} \) |
| 17 | \( 1 - 6.49T + 4.91e3T^{2} \) |
| 19 | \( 1 + 5.43T + 6.85e3T^{2} \) |
| 23 | \( 1 + 49.3T + 1.21e4T^{2} \) |
| 29 | \( 1 + 291.T + 2.43e4T^{2} \) |
| 31 | \( 1 - 244.T + 2.97e4T^{2} \) |
| 37 | \( 1 - 193.T + 5.06e4T^{2} \) |
| 41 | \( 1 - 315.T + 6.89e4T^{2} \) |
| 43 | \( 1 - 300.T + 7.95e4T^{2} \) |
| 47 | \( 1 + 86.5T + 1.03e5T^{2} \) |
| 53 | \( 1 + 509.T + 1.48e5T^{2} \) |
| 59 | \( 1 + 83.3T + 2.05e5T^{2} \) |
| 61 | \( 1 + 5.25T + 2.26e5T^{2} \) |
| 67 | \( 1 + 205.T + 3.00e5T^{2} \) |
| 71 | \( 1 - 1.00e3T + 3.57e5T^{2} \) |
| 73 | \( 1 - 1.00e3T + 3.89e5T^{2} \) |
| 79 | \( 1 + 863.T + 4.93e5T^{2} \) |
| 83 | \( 1 + 1.33e3T + 5.71e5T^{2} \) |
| 89 | \( 1 - 326.T + 7.04e5T^{2} \) |
| 97 | \( 1 + 1.52e3T + 9.12e5T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.866617179104076557473098780024, −9.292910589293167707581866849496, −8.117656687226005390987407264881, −7.65155649499516237211362880703, −6.58582852725826489533600907087, −5.56991007286448801804177232082, −4.28137017897688057816930304822, −2.46535011381250003962058324278, −1.22479267346348945102799469931, 0,
1.22479267346348945102799469931, 2.46535011381250003962058324278, 4.28137017897688057816930304822, 5.56991007286448801804177232082, 6.58582852725826489533600907087, 7.65155649499516237211362880703, 8.117656687226005390987407264881, 9.292910589293167707581866849496, 9.866617179104076557473098780024