Properties

Label 2-5220-1.1-c1-0-40
Degree $2$
Conductor $5220$
Sign $-1$
Analytic cond. $41.6819$
Root an. cond. $6.45615$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 5-s − 0.648·7-s − 3.35·11-s + 4.17·13-s − 4.82·17-s + 6.82·19-s − 5.52·23-s + 25-s + 29-s − 2.82·31-s − 0.648·35-s − 10.2·37-s − 8.17·41-s − 5.69·43-s + 2.64·47-s − 6.58·49-s + 2.87·53-s − 3.35·55-s + 13.2·59-s − 1.12·61-s + 4.17·65-s + 1.52·67-s + 8.87·71-s + 9.69·73-s + 2.17·77-s + 8.99·79-s − 1.94·83-s + ⋯
L(s)  = 1  + 0.447·5-s − 0.244·7-s − 1.01·11-s + 1.15·13-s − 1.16·17-s + 1.56·19-s − 1.15·23-s + 0.200·25-s + 0.185·29-s − 0.506·31-s − 0.109·35-s − 1.68·37-s − 1.27·41-s − 0.868·43-s + 0.386·47-s − 0.940·49-s + 0.395·53-s − 0.451·55-s + 1.72·59-s − 0.143·61-s + 0.517·65-s + 0.186·67-s + 1.05·71-s + 1.13·73-s + 0.247·77-s + 1.01·79-s − 0.213·83-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 5220 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5220 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(5220\)    =    \(2^{2} \cdot 3^{2} \cdot 5 \cdot 29\)
Sign: $-1$
Analytic conductor: \(41.6819\)
Root analytic conductor: \(6.45615\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 5220,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 - T \)
29 \( 1 - T \)
good7 \( 1 + 0.648T + 7T^{2} \)
11 \( 1 + 3.35T + 11T^{2} \)
13 \( 1 - 4.17T + 13T^{2} \)
17 \( 1 + 4.82T + 17T^{2} \)
19 \( 1 - 6.82T + 19T^{2} \)
23 \( 1 + 5.52T + 23T^{2} \)
31 \( 1 + 2.82T + 31T^{2} \)
37 \( 1 + 10.2T + 37T^{2} \)
41 \( 1 + 8.17T + 41T^{2} \)
43 \( 1 + 5.69T + 43T^{2} \)
47 \( 1 - 2.64T + 47T^{2} \)
53 \( 1 - 2.87T + 53T^{2} \)
59 \( 1 - 13.2T + 59T^{2} \)
61 \( 1 + 1.12T + 61T^{2} \)
67 \( 1 - 1.52T + 67T^{2} \)
71 \( 1 - 8.87T + 71T^{2} \)
73 \( 1 - 9.69T + 73T^{2} \)
79 \( 1 - 8.99T + 79T^{2} \)
83 \( 1 + 1.94T + 83T^{2} \)
89 \( 1 + 17.0T + 89T^{2} \)
97 \( 1 + 13.3T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.041227389211241973804789008303, −6.92687192791166052311481522380, −6.56033229582637809809321863363, −5.42716492047027328077659318231, −5.26283226594296558626517902941, −3.99316201191640441343857693944, −3.31387031175211363420609494670, −2.34865965233774095571105588383, −1.44087116678613878655112741439, 0, 1.44087116678613878655112741439, 2.34865965233774095571105588383, 3.31387031175211363420609494670, 3.99316201191640441343857693944, 5.26283226594296558626517902941, 5.42716492047027328077659318231, 6.56033229582637809809321863363, 6.92687192791166052311481522380, 8.041227389211241973804789008303

Graph of the $Z$-function along the critical line