Properties

Label 2-522-261.103-c1-0-1
Degree $2$
Conductor $522$
Sign $-0.781 - 0.623i$
Analytic cond. $4.16819$
Root an. cond. $2.04161$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.0747 − 0.997i)2-s + (−1.51 + 0.838i)3-s + (−0.988 + 0.149i)4-s + (−0.613 + 0.418i)5-s + (0.949 + 1.44i)6-s + (0.986 + 0.148i)7-s + (0.222 + 0.974i)8-s + (1.59 − 2.54i)9-s + (0.463 + 0.580i)10-s + (−0.221 + 0.0682i)11-s + (1.37 − 1.05i)12-s + (0.329 + 0.305i)13-s + (0.0745 − 0.995i)14-s + (0.579 − 1.14i)15-s + (0.955 − 0.294i)16-s − 7.63·17-s + ⋯
L(s)  = 1  + (−0.0528 − 0.705i)2-s + (−0.875 + 0.484i)3-s + (−0.494 + 0.0745i)4-s + (−0.274 + 0.187i)5-s + (0.387 + 0.591i)6-s + (0.372 + 0.0562i)7-s + (0.0786 + 0.344i)8-s + (0.531 − 0.847i)9-s + (0.146 + 0.183i)10-s + (−0.0666 + 0.0205i)11-s + (0.396 − 0.304i)12-s + (0.0913 + 0.0848i)13-s + (0.0199 − 0.265i)14-s + (0.149 − 0.296i)15-s + (0.238 − 0.0736i)16-s − 1.85·17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 522 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.781 - 0.623i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 522 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.781 - 0.623i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(522\)    =    \(2 \cdot 3^{2} \cdot 29\)
Sign: $-0.781 - 0.623i$
Analytic conductor: \(4.16819\)
Root analytic conductor: \(2.04161\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{522} (103, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 522,\ (\ :1/2),\ -0.781 - 0.623i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.0441902 + 0.126191i\)
\(L(\frac12)\) \(\approx\) \(0.0441902 + 0.126191i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (0.0747 + 0.997i)T \)
3 \( 1 + (1.51 - 0.838i)T \)
29 \( 1 + (5.26 - 1.14i)T \)
good5 \( 1 + (0.613 - 0.418i)T + (1.82 - 4.65i)T^{2} \)
7 \( 1 + (-0.986 - 0.148i)T + (6.68 + 2.06i)T^{2} \)
11 \( 1 + (0.221 - 0.0682i)T + (9.08 - 6.19i)T^{2} \)
13 \( 1 + (-0.329 - 0.305i)T + (0.971 + 12.9i)T^{2} \)
17 \( 1 + 7.63T + 17T^{2} \)
19 \( 1 + (4.08 + 5.12i)T + (-4.22 + 18.5i)T^{2} \)
23 \( 1 + (0.617 - 8.24i)T + (-22.7 - 3.42i)T^{2} \)
31 \( 1 + (2.12 - 1.45i)T + (11.3 - 28.8i)T^{2} \)
37 \( 1 + (0.995 + 4.36i)T + (-33.3 + 16.0i)T^{2} \)
41 \( 1 + (-4.77 + 8.26i)T + (-20.5 - 35.5i)T^{2} \)
43 \( 1 + (-3.19 - 2.17i)T + (15.7 + 40.0i)T^{2} \)
47 \( 1 + (6.96 - 2.14i)T + (38.8 - 26.4i)T^{2} \)
53 \( 1 + (12.0 + 5.79i)T + (33.0 + 41.4i)T^{2} \)
59 \( 1 + (6.99 - 12.1i)T + (-29.5 - 51.0i)T^{2} \)
61 \( 1 + (1.09 + 0.164i)T + (58.2 + 17.9i)T^{2} \)
67 \( 1 + (-10.5 - 3.26i)T + (55.3 + 37.7i)T^{2} \)
71 \( 1 + (0.802 - 3.51i)T + (-63.9 - 30.8i)T^{2} \)
73 \( 1 + (-8.33 + 4.01i)T + (45.5 - 57.0i)T^{2} \)
79 \( 1 + (-3.79 + 3.51i)T + (5.90 - 78.7i)T^{2} \)
83 \( 1 + (-2.72 + 6.95i)T + (-60.8 - 56.4i)T^{2} \)
89 \( 1 + (-5.55 - 2.67i)T + (55.4 + 69.5i)T^{2} \)
97 \( 1 + (-0.0468 + 0.119i)T + (-71.1 - 65.9i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.07703722250250685521768004466, −10.82034210220314417265183480703, −9.408674990843209053007272200926, −9.021151420450744016961784345538, −7.57555890580107253740399505788, −6.58559907276164278617419167229, −5.39468668072339319495953001243, −4.49805592498400108512359583665, −3.58011224795478017015460597380, −1.91492251113219216975977391196, 0.085964495435692189981341044055, 2.00256667117142779229562431595, 4.23115842280522340233571007879, 4.85556281052006183113843973501, 6.24995072274866954580317967913, 6.53660516264485563381801891511, 7.918568997470957331333042092756, 8.313143153772402527595304548073, 9.598678634128498431928051746939, 10.75303244383970866465489166002

Graph of the $Z$-function along the critical line