L(s) = 1 | + (0.399 − 0.916i)2-s + (−0.432 − 1.67i)3-s + (−0.680 − 0.733i)4-s + (−0.294 − 0.0443i)5-s + (−1.71 − 0.273i)6-s + (−1.01 − 0.937i)7-s + (−0.943 + 0.330i)8-s + (−2.62 + 1.45i)9-s + (−0.158 + 0.251i)10-s + (−3.89 + 3.35i)11-s + (−0.934 + 1.45i)12-s + (1.33 − 1.95i)13-s + (−1.26 + 0.551i)14-s + (0.0529 + 0.512i)15-s + (−0.0747 + 0.997i)16-s + (−4.21 − 4.21i)17-s + ⋯ |
L(s) = 1 | + (0.282 − 0.648i)2-s + (−0.249 − 0.968i)3-s + (−0.340 − 0.366i)4-s + (−0.131 − 0.0198i)5-s + (−0.698 − 0.111i)6-s + (−0.382 − 0.354i)7-s + (−0.333 + 0.116i)8-s + (−0.875 + 0.484i)9-s + (−0.0500 + 0.0796i)10-s + (−1.17 + 1.01i)11-s + (−0.269 + 0.420i)12-s + (0.370 − 0.543i)13-s + (−0.337 + 0.147i)14-s + (0.0136 + 0.132i)15-s + (−0.0186 + 0.249i)16-s + (−1.02 − 1.02i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 522 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.696 - 0.717i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 522 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.696 - 0.717i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.221688 + 0.524091i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.221688 + 0.524091i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.399 + 0.916i)T \) |
| 3 | \( 1 + (0.432 + 1.67i)T \) |
| 29 | \( 1 + (-5.36 - 0.456i)T \) |
good | 5 | \( 1 + (0.294 + 0.0443i)T + (4.77 + 1.47i)T^{2} \) |
| 7 | \( 1 + (1.01 + 0.937i)T + (0.523 + 6.98i)T^{2} \) |
| 11 | \( 1 + (3.89 - 3.35i)T + (1.63 - 10.8i)T^{2} \) |
| 13 | \( 1 + (-1.33 + 1.95i)T + (-4.74 - 12.1i)T^{2} \) |
| 17 | \( 1 + (4.21 + 4.21i)T + 17iT^{2} \) |
| 19 | \( 1 + (3.18 + 2.00i)T + (8.24 + 17.1i)T^{2} \) |
| 23 | \( 1 + (-6.76 - 2.65i)T + (16.8 + 15.6i)T^{2} \) |
| 31 | \( 1 + (4.52 - 3.34i)T + (9.13 - 29.6i)T^{2} \) |
| 37 | \( 1 + (1.84 + 5.28i)T + (-28.9 + 23.0i)T^{2} \) |
| 41 | \( 1 + (3.56 + 0.954i)T + (35.5 + 20.5i)T^{2} \) |
| 43 | \( 1 + (-5.20 + 7.05i)T + (-12.6 - 41.0i)T^{2} \) |
| 47 | \( 1 + (-5.09 - 5.91i)T + (-7.00 + 46.4i)T^{2} \) |
| 53 | \( 1 + (10.6 + 8.52i)T + (11.7 + 51.6i)T^{2} \) |
| 59 | \( 1 + (9.44 - 5.45i)T + (29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (3.08 - 0.115i)T + (60.8 - 4.55i)T^{2} \) |
| 67 | \( 1 + (-6.64 + 0.497i)T + (66.2 - 9.98i)T^{2} \) |
| 71 | \( 1 + (-9.76 + 4.70i)T + (44.2 - 55.5i)T^{2} \) |
| 73 | \( 1 + (-0.243 + 2.16i)T + (-71.1 - 16.2i)T^{2} \) |
| 79 | \( 1 + (-1.35 + 7.14i)T + (-73.5 - 28.8i)T^{2} \) |
| 83 | \( 1 + (2.93 - 9.51i)T + (-68.5 - 46.7i)T^{2} \) |
| 89 | \( 1 + (4.76 - 0.537i)T + (86.7 - 19.8i)T^{2} \) |
| 97 | \( 1 + (8.19 + 15.5i)T + (-54.6 + 80.1i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.72009013448365248177518604432, −9.530510151510712470310762910631, −8.528166039411321910642519558674, −7.41080257636998442269433603536, −6.78181741323739180103733149223, −5.48725804762670731269901378892, −4.64413671483004176318106021221, −3.06866060190474433206496812836, −2.06467610773164520450190485168, −0.29554793643550900764334582082,
2.82346531186740470942264425880, 3.92390337621552440356813908271, 4.88500019433557632018529663443, 5.93602196547412598135032034598, 6.48925223556754882038236373931, 8.062379918334652187473612167251, 8.681947331532410256107279951958, 9.515799121441746319991538573740, 10.75714694891493173001187940563, 11.07676688383873511102703960707