Properties

Label 2-522-261.101-c1-0-27
Degree $2$
Conductor $522$
Sign $-0.461 + 0.886i$
Analytic cond. $4.16819$
Root an. cond. $2.04161$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.399 + 0.916i)2-s + (1.60 − 0.651i)3-s + (−0.680 − 0.733i)4-s + (−1.48 − 0.223i)5-s + (−0.0446 + 1.73i)6-s + (−3.43 − 3.18i)7-s + (0.943 − 0.330i)8-s + (2.15 − 2.09i)9-s + (0.798 − 1.27i)10-s + (−1.19 + 1.02i)11-s + (−1.56 − 0.733i)12-s + (−2.74 + 4.02i)13-s + (4.29 − 1.87i)14-s + (−2.52 + 0.607i)15-s + (−0.0747 + 0.997i)16-s + (−3.43 − 3.43i)17-s + ⋯
L(s)  = 1  + (−0.282 + 0.648i)2-s + (0.926 − 0.376i)3-s + (−0.340 − 0.366i)4-s + (−0.663 − 0.0999i)5-s + (−0.0182 + 0.706i)6-s + (−1.29 − 1.20i)7-s + (0.333 − 0.116i)8-s + (0.717 − 0.697i)9-s + (0.252 − 0.401i)10-s + (−0.360 + 0.309i)11-s + (−0.452 − 0.211i)12-s + (−0.761 + 1.11i)13-s + (1.14 − 0.500i)14-s + (−0.652 + 0.156i)15-s + (−0.0186 + 0.249i)16-s + (−0.832 − 0.832i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 522 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.461 + 0.886i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 522 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.461 + 0.886i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(522\)    =    \(2 \cdot 3^{2} \cdot 29\)
Sign: $-0.461 + 0.886i$
Analytic conductor: \(4.16819\)
Root analytic conductor: \(2.04161\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{522} (101, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 522,\ (\ :1/2),\ -0.461 + 0.886i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.320661 - 0.528538i\)
\(L(\frac12)\) \(\approx\) \(0.320661 - 0.528538i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (0.399 - 0.916i)T \)
3 \( 1 + (-1.60 + 0.651i)T \)
29 \( 1 + (-0.165 + 5.38i)T \)
good5 \( 1 + (1.48 + 0.223i)T + (4.77 + 1.47i)T^{2} \)
7 \( 1 + (3.43 + 3.18i)T + (0.523 + 6.98i)T^{2} \)
11 \( 1 + (1.19 - 1.02i)T + (1.63 - 10.8i)T^{2} \)
13 \( 1 + (2.74 - 4.02i)T + (-4.74 - 12.1i)T^{2} \)
17 \( 1 + (3.43 + 3.43i)T + 17iT^{2} \)
19 \( 1 + (6.10 + 3.83i)T + (8.24 + 17.1i)T^{2} \)
23 \( 1 + (-7.09 - 2.78i)T + (16.8 + 15.6i)T^{2} \)
31 \( 1 + (0.509 - 0.375i)T + (9.13 - 29.6i)T^{2} \)
37 \( 1 + (-0.418 - 1.19i)T + (-28.9 + 23.0i)T^{2} \)
41 \( 1 + (1.78 + 0.478i)T + (35.5 + 20.5i)T^{2} \)
43 \( 1 + (-4.44 + 6.02i)T + (-12.6 - 41.0i)T^{2} \)
47 \( 1 + (-1.18 - 1.37i)T + (-7.00 + 46.4i)T^{2} \)
53 \( 1 + (-1.56 - 1.25i)T + (11.7 + 51.6i)T^{2} \)
59 \( 1 + (-9.90 + 5.71i)T + (29.5 - 51.0i)T^{2} \)
61 \( 1 + (-1.97 + 0.0738i)T + (60.8 - 4.55i)T^{2} \)
67 \( 1 + (0.669 - 0.0502i)T + (66.2 - 9.98i)T^{2} \)
71 \( 1 + (3.54 - 1.70i)T + (44.2 - 55.5i)T^{2} \)
73 \( 1 + (-0.851 + 7.55i)T + (-71.1 - 16.2i)T^{2} \)
79 \( 1 + (2.28 - 12.0i)T + (-73.5 - 28.8i)T^{2} \)
83 \( 1 + (-4.02 + 13.0i)T + (-68.5 - 46.7i)T^{2} \)
89 \( 1 + (-8.03 + 0.905i)T + (86.7 - 19.8i)T^{2} \)
97 \( 1 + (5.43 + 10.2i)T + (-54.6 + 80.1i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.25550406077975260253088769985, −9.425587385723376389497566683343, −8.866106267142552503137188870014, −7.63700041865180903958353285612, −7.01229788769076451465853508560, −6.60696079793237419961460344435, −4.60774449263234476649666669096, −3.89679209573029756050294603845, −2.47909827063414494032968510923, −0.33438326296944592824481285527, 2.38069571702161850247139948369, 3.09324078107948420282600544238, 4.05512915505280039191803119554, 5.42128495391157880355936217072, 6.75111928402461916189839719798, 7.994183479461342829627344450089, 8.637074943011442931731368693806, 9.317344744531971290539885850419, 10.30577518816736594935772281162, 10.83304658265244186740152626690

Graph of the $Z$-function along the critical line