Properties

Label 2-5202-1.1-c1-0-40
Degree $2$
Conductor $5202$
Sign $1$
Analytic cond. $41.5381$
Root an. cond. $6.44501$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 4-s + 3.41·5-s + 0.828·7-s − 8-s − 3.41·10-s + 4·11-s − 2.82·13-s − 0.828·14-s + 16-s − 1.17·19-s + 3.41·20-s − 4·22-s + 8.82·23-s + 6.65·25-s + 2.82·26-s + 0.828·28-s − 3.41·29-s − 4.82·31-s − 32-s + 2.82·35-s + 6.24·37-s + 1.17·38-s − 3.41·40-s + 11.0·41-s − 9.65·43-s + 4·44-s + ⋯
L(s)  = 1  − 0.707·2-s + 0.5·4-s + 1.52·5-s + 0.313·7-s − 0.353·8-s − 1.07·10-s + 1.20·11-s − 0.784·13-s − 0.221·14-s + 0.250·16-s − 0.268·19-s + 0.763·20-s − 0.852·22-s + 1.84·23-s + 1.33·25-s + 0.554·26-s + 0.156·28-s − 0.634·29-s − 0.867·31-s − 0.176·32-s + 0.478·35-s + 1.02·37-s + 0.190·38-s − 0.539·40-s + 1.72·41-s − 1.47·43-s + 0.603·44-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 5202 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5202 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(5202\)    =    \(2 \cdot 3^{2} \cdot 17^{2}\)
Sign: $1$
Analytic conductor: \(41.5381\)
Root analytic conductor: \(6.44501\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 5202,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.229111594\)
\(L(\frac12)\) \(\approx\) \(2.229111594\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + T \)
3 \( 1 \)
17 \( 1 \)
good5 \( 1 - 3.41T + 5T^{2} \)
7 \( 1 - 0.828T + 7T^{2} \)
11 \( 1 - 4T + 11T^{2} \)
13 \( 1 + 2.82T + 13T^{2} \)
19 \( 1 + 1.17T + 19T^{2} \)
23 \( 1 - 8.82T + 23T^{2} \)
29 \( 1 + 3.41T + 29T^{2} \)
31 \( 1 + 4.82T + 31T^{2} \)
37 \( 1 - 6.24T + 37T^{2} \)
41 \( 1 - 11.0T + 41T^{2} \)
43 \( 1 + 9.65T + 43T^{2} \)
47 \( 1 + 4.48T + 47T^{2} \)
53 \( 1 - 2.82T + 53T^{2} \)
59 \( 1 + 4.48T + 59T^{2} \)
61 \( 1 - 13.0T + 61T^{2} \)
67 \( 1 - 6.82T + 67T^{2} \)
71 \( 1 - 10.4T + 71T^{2} \)
73 \( 1 + 6.58T + 73T^{2} \)
79 \( 1 - 2.48T + 79T^{2} \)
83 \( 1 - 12.4T + 83T^{2} \)
89 \( 1 + 89T^{2} \)
97 \( 1 - 10.5T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.382854857037056308617255635208, −7.41699348368718585520898299135, −6.77206623331877112147368855845, −6.21807837433529896136866233967, −5.39540239644490210449160181563, −4.74034108022596321063241818176, −3.53585261514464642670460975142, −2.49638652474038117486502150350, −1.80759303737366475634753876730, −0.952851822784814163942094901685, 0.952851822784814163942094901685, 1.80759303737366475634753876730, 2.49638652474038117486502150350, 3.53585261514464642670460975142, 4.74034108022596321063241818176, 5.39540239644490210449160181563, 6.21807837433529896136866233967, 6.77206623331877112147368855845, 7.41699348368718585520898299135, 8.382854857037056308617255635208

Graph of the $Z$-function along the critical line