Properties

Label 2-5202-1.1-c1-0-30
Degree $2$
Conductor $5202$
Sign $-1$
Analytic cond. $41.5381$
Root an. cond. $6.44501$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 4-s − 3.53·5-s − 4.75·7-s − 8-s + 3.53·10-s − 3.18·11-s − 1.06·13-s + 4.75·14-s + 16-s + 5.75·19-s − 3.53·20-s + 3.18·22-s + 0.610·23-s + 7.47·25-s + 1.06·26-s − 4.75·28-s + 2.02·29-s + 8.92·31-s − 32-s + 16.8·35-s − 5.30·37-s − 5.75·38-s + 3.53·40-s + 6.45·41-s + 6·43-s − 3.18·44-s + ⋯
L(s)  = 1  − 0.707·2-s + 0.5·4-s − 1.57·5-s − 1.79·7-s − 0.353·8-s + 1.11·10-s − 0.960·11-s − 0.295·13-s + 1.27·14-s + 0.250·16-s + 1.32·19-s − 0.789·20-s + 0.679·22-s + 0.127·23-s + 1.49·25-s + 0.208·26-s − 0.899·28-s + 0.375·29-s + 1.60·31-s − 0.176·32-s + 2.84·35-s − 0.872·37-s − 0.934·38-s + 0.558·40-s + 1.00·41-s + 0.914·43-s − 0.480·44-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 5202 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5202 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(5202\)    =    \(2 \cdot 3^{2} \cdot 17^{2}\)
Sign: $-1$
Analytic conductor: \(41.5381\)
Root analytic conductor: \(6.44501\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 5202,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + T \)
3 \( 1 \)
17 \( 1 \)
good5 \( 1 + 3.53T + 5T^{2} \)
7 \( 1 + 4.75T + 7T^{2} \)
11 \( 1 + 3.18T + 11T^{2} \)
13 \( 1 + 1.06T + 13T^{2} \)
19 \( 1 - 5.75T + 19T^{2} \)
23 \( 1 - 0.610T + 23T^{2} \)
29 \( 1 - 2.02T + 29T^{2} \)
31 \( 1 - 8.92T + 31T^{2} \)
37 \( 1 + 5.30T + 37T^{2} \)
41 \( 1 - 6.45T + 41T^{2} \)
43 \( 1 - 6T + 43T^{2} \)
47 \( 1 + 13.1T + 47T^{2} \)
53 \( 1 - 1.79T + 53T^{2} \)
59 \( 1 - 9.04T + 59T^{2} \)
61 \( 1 + 1.01T + 61T^{2} \)
67 \( 1 + 2.58T + 67T^{2} \)
71 \( 1 - 10.4T + 71T^{2} \)
73 \( 1 + 13.9T + 73T^{2} \)
79 \( 1 + 4.73T + 79T^{2} \)
83 \( 1 + 0.0641T + 83T^{2} \)
89 \( 1 + 5.67T + 89T^{2} \)
97 \( 1 - 3.02T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.84543758743832314593298908399, −7.23768882949819347895966505219, −6.72306948123593557723604485813, −5.84567881484033796010209949072, −4.88356540015671209240519104996, −3.89331937747355494066192900313, −3.11422889228566283568947802026, −2.70419781495002138424063964544, −0.835244565750533502984906921141, 0, 0.835244565750533502984906921141, 2.70419781495002138424063964544, 3.11422889228566283568947802026, 3.89331937747355494066192900313, 4.88356540015671209240519104996, 5.84567881484033796010209949072, 6.72306948123593557723604485813, 7.23768882949819347895966505219, 7.84543758743832314593298908399

Graph of the $Z$-function along the critical line