Properties

Label 2-5202-1.1-c1-0-29
Degree $2$
Conductor $5202$
Sign $1$
Analytic cond. $41.5381$
Root an. cond. $6.44501$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 4-s − 4.17·5-s + 2.28·7-s + 8-s − 4.17·10-s + 4.52·11-s + 2.72·13-s + 2.28·14-s + 16-s + 0.253·19-s − 4.17·20-s + 4.52·22-s − 1.41·23-s + 12.4·25-s + 2.72·26-s + 2.28·28-s − 10.0·29-s − 0.944·31-s + 32-s − 9.53·35-s + 2.48·37-s + 0.253·38-s − 4.17·40-s + 2.67·41-s + 1.29·43-s + 4.52·44-s + ⋯
L(s)  = 1  + 0.707·2-s + 0.5·4-s − 1.86·5-s + 0.862·7-s + 0.353·8-s − 1.32·10-s + 1.36·11-s + 0.757·13-s + 0.609·14-s + 0.250·16-s + 0.0582·19-s − 0.934·20-s + 0.964·22-s − 0.294·23-s + 2.49·25-s + 0.535·26-s + 0.431·28-s − 1.87·29-s − 0.169·31-s + 0.176·32-s − 1.61·35-s + 0.408·37-s + 0.0411·38-s − 0.660·40-s + 0.417·41-s + 0.197·43-s + 0.682·44-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 5202 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5202 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(5202\)    =    \(2 \cdot 3^{2} \cdot 17^{2}\)
Sign: $1$
Analytic conductor: \(41.5381\)
Root analytic conductor: \(6.44501\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 5202,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.705486230\)
\(L(\frac12)\) \(\approx\) \(2.705486230\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - T \)
3 \( 1 \)
17 \( 1 \)
good5 \( 1 + 4.17T + 5T^{2} \)
7 \( 1 - 2.28T + 7T^{2} \)
11 \( 1 - 4.52T + 11T^{2} \)
13 \( 1 - 2.72T + 13T^{2} \)
19 \( 1 - 0.253T + 19T^{2} \)
23 \( 1 + 1.41T + 23T^{2} \)
29 \( 1 + 10.0T + 29T^{2} \)
31 \( 1 + 0.944T + 31T^{2} \)
37 \( 1 - 2.48T + 37T^{2} \)
41 \( 1 - 2.67T + 41T^{2} \)
43 \( 1 - 1.29T + 43T^{2} \)
47 \( 1 - 3.55T + 47T^{2} \)
53 \( 1 + 0.457T + 53T^{2} \)
59 \( 1 - 13.6T + 59T^{2} \)
61 \( 1 + 1.92T + 61T^{2} \)
67 \( 1 - 3.71T + 67T^{2} \)
71 \( 1 + 15.4T + 71T^{2} \)
73 \( 1 - 7.82T + 73T^{2} \)
79 \( 1 - 10.2T + 79T^{2} \)
83 \( 1 - 3.11T + 83T^{2} \)
89 \( 1 - 10.6T + 89T^{2} \)
97 \( 1 + 14.2T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.043355873913551019196853248094, −7.48877846677768065288107176937, −6.87161800111923266791193944901, −6.02228432394590914020393902747, −5.11852224267690287727254206488, −4.21814187438528280037683492986, −3.92949038777217685471464043690, −3.27092110842346064409774710101, −1.89258720504176388048082774142, −0.835071374319511885634739358228, 0.835071374319511885634739358228, 1.89258720504176388048082774142, 3.27092110842346064409774710101, 3.92949038777217685471464043690, 4.21814187438528280037683492986, 5.11852224267690287727254206488, 6.02228432394590914020393902747, 6.87161800111923266791193944901, 7.48877846677768065288107176937, 8.043355873913551019196853248094

Graph of the $Z$-function along the critical line