Properties

Label 2-5200-1.1-c1-0-37
Degree $2$
Conductor $5200$
Sign $1$
Analytic cond. $41.5222$
Root an. cond. $6.44377$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2.16·7-s − 3·9-s + 0.162·11-s − 13-s + 7.32·17-s + 2·19-s + 4.32·23-s + 29-s + 0.162·31-s + 6·37-s − 12.3·43-s − 8.16·47-s − 2.32·49-s − 5.32·53-s + 5.83·59-s + 3.32·61-s − 6.48·63-s + 2.16·67-s − 10.6·71-s + 10.6·73-s + 0.350·77-s + 8.32·79-s + 9·81-s − 9.83·83-s + 16.6·89-s − 2.16·91-s + 10·97-s + ⋯
L(s)  = 1  + 0.817·7-s − 9-s + 0.0489·11-s − 0.277·13-s + 1.77·17-s + 0.458·19-s + 0.901·23-s + 0.185·29-s + 0.0291·31-s + 0.986·37-s − 1.87·43-s − 1.19·47-s − 0.332·49-s − 0.731·53-s + 0.760·59-s + 0.425·61-s − 0.817·63-s + 0.264·67-s − 1.26·71-s + 1.24·73-s + 0.0399·77-s + 0.936·79-s + 81-s − 1.07·83-s + 1.76·89-s − 0.226·91-s + 1.01·97-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 5200 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5200 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(5200\)    =    \(2^{4} \cdot 5^{2} \cdot 13\)
Sign: $1$
Analytic conductor: \(41.5222\)
Root analytic conductor: \(6.44377\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 5200,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.110981392\)
\(L(\frac12)\) \(\approx\) \(2.110981392\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 \)
13 \( 1 + T \)
good3 \( 1 + 3T^{2} \)
7 \( 1 - 2.16T + 7T^{2} \)
11 \( 1 - 0.162T + 11T^{2} \)
17 \( 1 - 7.32T + 17T^{2} \)
19 \( 1 - 2T + 19T^{2} \)
23 \( 1 - 4.32T + 23T^{2} \)
29 \( 1 - T + 29T^{2} \)
31 \( 1 - 0.162T + 31T^{2} \)
37 \( 1 - 6T + 37T^{2} \)
41 \( 1 + 41T^{2} \)
43 \( 1 + 12.3T + 43T^{2} \)
47 \( 1 + 8.16T + 47T^{2} \)
53 \( 1 + 5.32T + 53T^{2} \)
59 \( 1 - 5.83T + 59T^{2} \)
61 \( 1 - 3.32T + 61T^{2} \)
67 \( 1 - 2.16T + 67T^{2} \)
71 \( 1 + 10.6T + 71T^{2} \)
73 \( 1 - 10.6T + 73T^{2} \)
79 \( 1 - 8.32T + 79T^{2} \)
83 \( 1 + 9.83T + 83T^{2} \)
89 \( 1 - 16.6T + 89T^{2} \)
97 \( 1 - 10T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.056717813756388712582981522410, −7.75187948157186546264118190184, −6.77818412018608283728457840652, −5.96094048166934299531973256435, −5.17964157763558050679442940894, −4.81481378281062737945821565481, −3.49171559641011948347901517548, −2.99266923060370776969883781549, −1.83920691448561932679691443032, −0.810398906887766923592802347512, 0.810398906887766923592802347512, 1.83920691448561932679691443032, 2.99266923060370776969883781549, 3.49171559641011948347901517548, 4.81481378281062737945821565481, 5.17964157763558050679442940894, 5.96094048166934299531973256435, 6.77818412018608283728457840652, 7.75187948157186546264118190184, 8.056717813756388712582981522410

Graph of the $Z$-function along the critical line