Properties

Label 2-5200-1.1-c1-0-111
Degree $2$
Conductor $5200$
Sign $-1$
Analytic cond. $41.5222$
Root an. cond. $6.44377$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2.56·3-s − 2.56·7-s + 3.56·9-s + 5.12·11-s − 13-s − 5.68·17-s − 5.12·19-s − 6.56·21-s − 8·23-s + 1.43·27-s − 2·29-s − 4·31-s + 13.1·33-s − 9.68·37-s − 2.56·39-s − 3.12·41-s + 5.43·43-s − 0.315·47-s − 0.438·49-s − 14.5·51-s − 3.12·53-s − 13.1·57-s − 5.12·59-s + 11.1·61-s − 9.12·63-s − 5.12·67-s − 20.4·69-s + ⋯
L(s)  = 1  + 1.47·3-s − 0.968·7-s + 1.18·9-s + 1.54·11-s − 0.277·13-s − 1.37·17-s − 1.17·19-s − 1.43·21-s − 1.66·23-s + 0.276·27-s − 0.371·29-s − 0.718·31-s + 2.28·33-s − 1.59·37-s − 0.410·39-s − 0.487·41-s + 0.829·43-s − 0.0459·47-s − 0.0626·49-s − 2.03·51-s − 0.428·53-s − 1.73·57-s − 0.666·59-s + 1.42·61-s − 1.14·63-s − 0.625·67-s − 2.46·69-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 5200 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5200 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(5200\)    =    \(2^{4} \cdot 5^{2} \cdot 13\)
Sign: $-1$
Analytic conductor: \(41.5222\)
Root analytic conductor: \(6.44377\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 5200,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 \)
13 \( 1 + T \)
good3 \( 1 - 2.56T + 3T^{2} \)
7 \( 1 + 2.56T + 7T^{2} \)
11 \( 1 - 5.12T + 11T^{2} \)
17 \( 1 + 5.68T + 17T^{2} \)
19 \( 1 + 5.12T + 19T^{2} \)
23 \( 1 + 8T + 23T^{2} \)
29 \( 1 + 2T + 29T^{2} \)
31 \( 1 + 4T + 31T^{2} \)
37 \( 1 + 9.68T + 37T^{2} \)
41 \( 1 + 3.12T + 41T^{2} \)
43 \( 1 - 5.43T + 43T^{2} \)
47 \( 1 + 0.315T + 47T^{2} \)
53 \( 1 + 3.12T + 53T^{2} \)
59 \( 1 + 5.12T + 59T^{2} \)
61 \( 1 - 11.1T + 61T^{2} \)
67 \( 1 + 5.12T + 67T^{2} \)
71 \( 1 - 7.68T + 71T^{2} \)
73 \( 1 - 6T + 73T^{2} \)
79 \( 1 + 8T + 79T^{2} \)
83 \( 1 - 2.24T + 83T^{2} \)
89 \( 1 - 10T + 89T^{2} \)
97 \( 1 - 8.24T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.026642507422669761059204455682, −7.07707774038457988039724322452, −6.59862760049216744189215010458, −5.92981294406266044089713846339, −4.54406800678627966732615865159, −3.83792058552520780745080226009, −3.45526606635599252297821746820, −2.28125565019758375297421050789, −1.82242405707376003780275513056, 0, 1.82242405707376003780275513056, 2.28125565019758375297421050789, 3.45526606635599252297821746820, 3.83792058552520780745080226009, 4.54406800678627966732615865159, 5.92981294406266044089713846339, 6.59862760049216744189215010458, 7.07707774038457988039724322452, 8.026642507422669761059204455682

Graph of the $Z$-function along the critical line