Properties

Label 2-5200-1.1-c1-0-100
Degree $2$
Conductor $5200$
Sign $-1$
Analytic cond. $41.5222$
Root an. cond. $6.44377$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s − 2·9-s + 4.77·11-s + 13-s − 4.77·17-s − 2.77·19-s + 1.77·23-s − 5·27-s − 9.77·29-s − 9.54·31-s + 4.77·33-s + 7.54·37-s + 39-s + 8.77·41-s − 9.77·43-s − 4·47-s − 7·49-s − 4.77·51-s + 0.227·53-s − 2.77·57-s + 7.54·59-s − 13.3·61-s − 12.7·67-s + 1.77·69-s + 3.54·71-s + 10.7·73-s + 1.77·79-s + ⋯
L(s)  = 1  + 0.577·3-s − 0.666·9-s + 1.43·11-s + 0.277·13-s − 1.15·17-s − 0.635·19-s + 0.369·23-s − 0.962·27-s − 1.81·29-s − 1.71·31-s + 0.830·33-s + 1.24·37-s + 0.160·39-s + 1.36·41-s − 1.49·43-s − 0.583·47-s − 49-s − 0.668·51-s + 0.0313·53-s − 0.367·57-s + 0.982·59-s − 1.70·61-s − 1.56·67-s + 0.213·69-s + 0.420·71-s + 1.26·73-s + 0.199·79-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 5200 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5200 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(5200\)    =    \(2^{4} \cdot 5^{2} \cdot 13\)
Sign: $-1$
Analytic conductor: \(41.5222\)
Root analytic conductor: \(6.44377\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 5200,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 \)
13 \( 1 - T \)
good3 \( 1 - T + 3T^{2} \)
7 \( 1 + 7T^{2} \)
11 \( 1 - 4.77T + 11T^{2} \)
17 \( 1 + 4.77T + 17T^{2} \)
19 \( 1 + 2.77T + 19T^{2} \)
23 \( 1 - 1.77T + 23T^{2} \)
29 \( 1 + 9.77T + 29T^{2} \)
31 \( 1 + 9.54T + 31T^{2} \)
37 \( 1 - 7.54T + 37T^{2} \)
41 \( 1 - 8.77T + 41T^{2} \)
43 \( 1 + 9.77T + 43T^{2} \)
47 \( 1 + 4T + 47T^{2} \)
53 \( 1 - 0.227T + 53T^{2} \)
59 \( 1 - 7.54T + 59T^{2} \)
61 \( 1 + 13.3T + 61T^{2} \)
67 \( 1 + 12.7T + 67T^{2} \)
71 \( 1 - 3.54T + 71T^{2} \)
73 \( 1 - 10.7T + 73T^{2} \)
79 \( 1 - 1.77T + 79T^{2} \)
83 \( 1 + 0.772T + 83T^{2} \)
89 \( 1 + 5.22T + 89T^{2} \)
97 \( 1 - 14T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.910539218896715420055479959928, −7.17553451039629766401040867787, −6.36553645857486343988114827097, −5.86433141549918416476271064305, −4.80608777757039834381370764819, −3.93000076679833002891788128862, −3.42316167971233042130309041739, −2.31485011398799386639224773031, −1.56939260707687327757395777472, 0, 1.56939260707687327757395777472, 2.31485011398799386639224773031, 3.42316167971233042130309041739, 3.93000076679833002891788128862, 4.80608777757039834381370764819, 5.86433141549918416476271064305, 6.36553645857486343988114827097, 7.17553451039629766401040867787, 7.910539218896715420055479959928

Graph of the $Z$-function along the critical line