L(s) = 1 | + (1.23 − 0.684i)2-s + (−1.48 − 0.858i)3-s + (1.06 − 1.69i)4-s + 5-s + (−2.42 − 0.0445i)6-s + (−3.27 + 1.89i)7-s + (0.155 − 2.82i)8-s + (−0.0260 − 0.0450i)9-s + (1.23 − 0.684i)10-s + (1.16 − 2.01i)11-s + (−3.03 + 1.60i)12-s + (−0.0528 − 3.60i)13-s + (−2.75 + 4.58i)14-s + (−1.48 − 0.858i)15-s + (−1.74 − 3.60i)16-s + (−3.14 − 5.44i)17-s + ⋯ |
L(s) = 1 | + (0.875 − 0.484i)2-s + (−0.858 − 0.495i)3-s + (0.531 − 0.847i)4-s + 0.447·5-s + (−0.991 − 0.0182i)6-s + (−1.23 + 0.714i)7-s + (0.0550 − 0.998i)8-s + (−0.00867 − 0.0150i)9-s + (0.391 − 0.216i)10-s + (0.351 − 0.608i)11-s + (−0.876 + 0.463i)12-s + (−0.0146 − 0.999i)13-s + (−0.737 + 1.22i)14-s + (−0.383 − 0.221i)15-s + (−0.435 − 0.900i)16-s + (−0.763 − 1.32i)17-s + ⋯ |
Λ(s)=(=(520s/2ΓC(s)L(s)(−0.879+0.475i)Λ(2−s)
Λ(s)=(=(520s/2ΓC(s+1/2)L(s)(−0.879+0.475i)Λ(1−s)
Degree: |
2 |
Conductor: |
520
= 23⋅5⋅13
|
Sign: |
−0.879+0.475i
|
Analytic conductor: |
4.15222 |
Root analytic conductor: |
2.03769 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ520(381,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 520, ( :1/2), −0.879+0.475i)
|
Particular Values
L(1) |
≈ |
0.335951−1.32676i |
L(21) |
≈ |
0.335951−1.32676i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−1.23+0.684i)T |
| 5 | 1−T |
| 13 | 1+(0.0528+3.60i)T |
good | 3 | 1+(1.48+0.858i)T+(1.5+2.59i)T2 |
| 7 | 1+(3.27−1.89i)T+(3.5−6.06i)T2 |
| 11 | 1+(−1.16+2.01i)T+(−5.5−9.52i)T2 |
| 17 | 1+(3.14+5.44i)T+(−8.5+14.7i)T2 |
| 19 | 1+(0.665+1.15i)T+(−9.5+16.4i)T2 |
| 23 | 1+(2.99−5.18i)T+(−11.5−19.9i)T2 |
| 29 | 1+(−1.31−0.758i)T+(14.5+25.1i)T2 |
| 31 | 1−0.175iT−31T2 |
| 37 | 1+(−2.04+3.53i)T+(−18.5−32.0i)T2 |
| 41 | 1+(−10.9−6.31i)T+(20.5+35.5i)T2 |
| 43 | 1+(−7.71+4.45i)T+(21.5−37.2i)T2 |
| 47 | 1−3.15iT−47T2 |
| 53 | 1+0.254iT−53T2 |
| 59 | 1+(5.61+9.72i)T+(−29.5+51.0i)T2 |
| 61 | 1+(−0.168+0.0972i)T+(30.5−52.8i)T2 |
| 67 | 1+(−2.63+4.55i)T+(−33.5−58.0i)T2 |
| 71 | 1+(−11.0+6.36i)T+(35.5−61.4i)T2 |
| 73 | 1+1.93iT−73T2 |
| 79 | 1−6.68T+79T2 |
| 83 | 1+6.27T+83T2 |
| 89 | 1+(9.69+5.59i)T+(44.5+77.0i)T2 |
| 97 | 1+(10.4−6.01i)T+(48.5−84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.89976120060278524918975995381, −9.644004166606039300225152359478, −9.171604607368882908402569886612, −7.35983982339325874464795754120, −6.25016684834776358766671411642, −6.00033110919669946346762068037, −5.05657712360313135332348301535, −3.45099565030957852296423184331, −2.52326247952343878936483304640, −0.64568847587507841722283481101,
2.34760249769605589570304541796, 4.05590418130357855803532800119, 4.42627221044200414198726524448, 5.92458913699244833851513463988, 6.34154664420354679364991667038, 7.17283682217754247460372751901, 8.524605089221684284864119301996, 9.687109131853891705326556057920, 10.51817862387994483275626891383, 11.21360653612276568912871759411