L(s) = 1 | + (1.23 − 0.684i)2-s + (−1.48 − 0.858i)3-s + (1.06 − 1.69i)4-s + 5-s + (−2.42 − 0.0445i)6-s + (−3.27 + 1.89i)7-s + (0.155 − 2.82i)8-s + (−0.0260 − 0.0450i)9-s + (1.23 − 0.684i)10-s + (1.16 − 2.01i)11-s + (−3.03 + 1.60i)12-s + (−0.0528 − 3.60i)13-s + (−2.75 + 4.58i)14-s + (−1.48 − 0.858i)15-s + (−1.74 − 3.60i)16-s + (−3.14 − 5.44i)17-s + ⋯ |
L(s) = 1 | + (0.875 − 0.484i)2-s + (−0.858 − 0.495i)3-s + (0.531 − 0.847i)4-s + 0.447·5-s + (−0.991 − 0.0182i)6-s + (−1.23 + 0.714i)7-s + (0.0550 − 0.998i)8-s + (−0.00867 − 0.0150i)9-s + (0.391 − 0.216i)10-s + (0.351 − 0.608i)11-s + (−0.876 + 0.463i)12-s + (−0.0146 − 0.999i)13-s + (−0.737 + 1.22i)14-s + (−0.383 − 0.221i)15-s + (−0.435 − 0.900i)16-s + (−0.763 − 1.32i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 520 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.879 + 0.475i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 520 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.879 + 0.475i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.335951 - 1.32676i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.335951 - 1.32676i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-1.23 + 0.684i)T \) |
| 5 | \( 1 - T \) |
| 13 | \( 1 + (0.0528 + 3.60i)T \) |
good | 3 | \( 1 + (1.48 + 0.858i)T + (1.5 + 2.59i)T^{2} \) |
| 7 | \( 1 + (3.27 - 1.89i)T + (3.5 - 6.06i)T^{2} \) |
| 11 | \( 1 + (-1.16 + 2.01i)T + (-5.5 - 9.52i)T^{2} \) |
| 17 | \( 1 + (3.14 + 5.44i)T + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (0.665 + 1.15i)T + (-9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (2.99 - 5.18i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (-1.31 - 0.758i)T + (14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 - 0.175iT - 31T^{2} \) |
| 37 | \( 1 + (-2.04 + 3.53i)T + (-18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + (-10.9 - 6.31i)T + (20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (-7.71 + 4.45i)T + (21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 - 3.15iT - 47T^{2} \) |
| 53 | \( 1 + 0.254iT - 53T^{2} \) |
| 59 | \( 1 + (5.61 + 9.72i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (-0.168 + 0.0972i)T + (30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (-2.63 + 4.55i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + (-11.0 + 6.36i)T + (35.5 - 61.4i)T^{2} \) |
| 73 | \( 1 + 1.93iT - 73T^{2} \) |
| 79 | \( 1 - 6.68T + 79T^{2} \) |
| 83 | \( 1 + 6.27T + 83T^{2} \) |
| 89 | \( 1 + (9.69 + 5.59i)T + (44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + (10.4 - 6.01i)T + (48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.89976120060278524918975995381, −9.644004166606039300225152359478, −9.171604607368882908402569886612, −7.35983982339325874464795754120, −6.25016684834776358766671411642, −6.00033110919669946346762068037, −5.05657712360313135332348301535, −3.45099565030957852296423184331, −2.52326247952343878936483304640, −0.64568847587507841722283481101,
2.34760249769605589570304541796, 4.05590418130357855803532800119, 4.42627221044200414198726524448, 5.92458913699244833851513463988, 6.34154664420354679364991667038, 7.17283682217754247460372751901, 8.524605089221684284864119301996, 9.687109131853891705326556057920, 10.51817862387994483275626891383, 11.21360653612276568912871759411