L(s) = 1 | + (−0.0430 − 1.41i)2-s + (2.59 + 1.49i)3-s + (−1.99 + 0.121i)4-s + 5-s + (2.00 − 3.73i)6-s + (−0.668 + 0.385i)7-s + (0.257 + 2.81i)8-s + (2.98 + 5.16i)9-s + (−0.0430 − 1.41i)10-s + (−0.183 + 0.317i)11-s + (−5.35 − 2.67i)12-s + (2.71 − 2.36i)13-s + (0.574 + 0.928i)14-s + (2.59 + 1.49i)15-s + (3.97 − 0.485i)16-s + (1.37 + 2.37i)17-s + ⋯ |
L(s) = 1 | + (−0.0304 − 0.999i)2-s + (1.49 + 0.864i)3-s + (−0.998 + 0.0607i)4-s + 0.447·5-s + (0.818 − 1.52i)6-s + (−0.252 + 0.145i)7-s + (0.0911 + 0.995i)8-s + (0.994 + 1.72i)9-s + (−0.0135 − 0.447i)10-s + (−0.0552 + 0.0956i)11-s + (−1.54 − 0.771i)12-s + (0.753 − 0.657i)13-s + (0.153 + 0.248i)14-s + (0.669 + 0.386i)15-s + (0.992 − 0.121i)16-s + (0.332 + 0.575i)17-s + ⋯ |
Λ(s)=(=(520s/2ΓC(s)L(s)(0.974+0.224i)Λ(2−s)
Λ(s)=(=(520s/2ΓC(s+1/2)L(s)(0.974+0.224i)Λ(1−s)
Degree: |
2 |
Conductor: |
520
= 23⋅5⋅13
|
Sign: |
0.974+0.224i
|
Analytic conductor: |
4.15222 |
Root analytic conductor: |
2.03769 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ520(381,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 520, ( :1/2), 0.974+0.224i)
|
Particular Values
L(1) |
≈ |
2.19933−0.249899i |
L(21) |
≈ |
2.19933−0.249899i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.0430+1.41i)T |
| 5 | 1−T |
| 13 | 1+(−2.71+2.36i)T |
good | 3 | 1+(−2.59−1.49i)T+(1.5+2.59i)T2 |
| 7 | 1+(0.668−0.385i)T+(3.5−6.06i)T2 |
| 11 | 1+(0.183−0.317i)T+(−5.5−9.52i)T2 |
| 17 | 1+(−1.37−2.37i)T+(−8.5+14.7i)T2 |
| 19 | 1+(−0.199−0.345i)T+(−9.5+16.4i)T2 |
| 23 | 1+(0.390−0.676i)T+(−11.5−19.9i)T2 |
| 29 | 1+(1.82+1.05i)T+(14.5+25.1i)T2 |
| 31 | 1+9.83iT−31T2 |
| 37 | 1+(4.55−7.88i)T+(−18.5−32.0i)T2 |
| 41 | 1+(−6.57−3.79i)T+(20.5+35.5i)T2 |
| 43 | 1+(5.38−3.10i)T+(21.5−37.2i)T2 |
| 47 | 1+8.57iT−47T2 |
| 53 | 1+4.85iT−53T2 |
| 59 | 1+(6.27+10.8i)T+(−29.5+51.0i)T2 |
| 61 | 1+(1.23−0.712i)T+(30.5−52.8i)T2 |
| 67 | 1+(2.10−3.63i)T+(−33.5−58.0i)T2 |
| 71 | 1+(−1.22+0.707i)T+(35.5−61.4i)T2 |
| 73 | 1+16.3iT−73T2 |
| 79 | 1+4.89T+79T2 |
| 83 | 1+2.70T+83T2 |
| 89 | 1+(10.0+5.82i)T+(44.5+77.0i)T2 |
| 97 | 1+(−11.2+6.48i)T+(48.5−84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.52645306273854197021425214715, −9.878560308416904263005613558514, −9.334912849098707373355013030762, −8.406805295495744450394235533397, −7.86370717026659879194503477720, −5.95518785724294527360351597503, −4.72604376305583212123962736152, −3.68004631478244396131897317531, −2.98147159495619936159925052319, −1.82115802237513887872885982519,
1.42791936693660863274840154192, 3.00628778133818768570685640997, 4.06074010338716614691191614362, 5.56585829426747353214057327105, 6.72682475722575212115911754995, 7.21853659583952590755064474213, 8.210309570014313917684543542686, 8.966431446236856839968579909888, 9.425750353122368022044346281267, 10.60281271894754530288946509840