L(s) = 1 | + (−0.0430 − 1.41i)2-s + (2.59 + 1.49i)3-s + (−1.99 + 0.121i)4-s + 5-s + (2.00 − 3.73i)6-s + (−0.668 + 0.385i)7-s + (0.257 + 2.81i)8-s + (2.98 + 5.16i)9-s + (−0.0430 − 1.41i)10-s + (−0.183 + 0.317i)11-s + (−5.35 − 2.67i)12-s + (2.71 − 2.36i)13-s + (0.574 + 0.928i)14-s + (2.59 + 1.49i)15-s + (3.97 − 0.485i)16-s + (1.37 + 2.37i)17-s + ⋯ |
L(s) = 1 | + (−0.0304 − 0.999i)2-s + (1.49 + 0.864i)3-s + (−0.998 + 0.0607i)4-s + 0.447·5-s + (0.818 − 1.52i)6-s + (−0.252 + 0.145i)7-s + (0.0911 + 0.995i)8-s + (0.994 + 1.72i)9-s + (−0.0135 − 0.447i)10-s + (−0.0552 + 0.0956i)11-s + (−1.54 − 0.771i)12-s + (0.753 − 0.657i)13-s + (0.153 + 0.248i)14-s + (0.669 + 0.386i)15-s + (0.992 − 0.121i)16-s + (0.332 + 0.575i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 520 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.974 + 0.224i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 520 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.974 + 0.224i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.19933 - 0.249899i\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.19933 - 0.249899i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.0430 + 1.41i)T \) |
| 5 | \( 1 - T \) |
| 13 | \( 1 + (-2.71 + 2.36i)T \) |
good | 3 | \( 1 + (-2.59 - 1.49i)T + (1.5 + 2.59i)T^{2} \) |
| 7 | \( 1 + (0.668 - 0.385i)T + (3.5 - 6.06i)T^{2} \) |
| 11 | \( 1 + (0.183 - 0.317i)T + (-5.5 - 9.52i)T^{2} \) |
| 17 | \( 1 + (-1.37 - 2.37i)T + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (-0.199 - 0.345i)T + (-9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (0.390 - 0.676i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (1.82 + 1.05i)T + (14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + 9.83iT - 31T^{2} \) |
| 37 | \( 1 + (4.55 - 7.88i)T + (-18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + (-6.57 - 3.79i)T + (20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (5.38 - 3.10i)T + (21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + 8.57iT - 47T^{2} \) |
| 53 | \( 1 + 4.85iT - 53T^{2} \) |
| 59 | \( 1 + (6.27 + 10.8i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (1.23 - 0.712i)T + (30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (2.10 - 3.63i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + (-1.22 + 0.707i)T + (35.5 - 61.4i)T^{2} \) |
| 73 | \( 1 + 16.3iT - 73T^{2} \) |
| 79 | \( 1 + 4.89T + 79T^{2} \) |
| 83 | \( 1 + 2.70T + 83T^{2} \) |
| 89 | \( 1 + (10.0 + 5.82i)T + (44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + (-11.2 + 6.48i)T + (48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.52645306273854197021425214715, −9.878560308416904263005613558514, −9.334912849098707373355013030762, −8.406805295495744450394235533397, −7.86370717026659879194503477720, −5.95518785724294527360351597503, −4.72604376305583212123962736152, −3.68004631478244396131897317531, −2.98147159495619936159925052319, −1.82115802237513887872885982519,
1.42791936693660863274840154192, 3.00628778133818768570685640997, 4.06074010338716614691191614362, 5.56585829426747353214057327105, 6.72682475722575212115911754995, 7.21853659583952590755064474213, 8.210309570014313917684543542686, 8.966431446236856839968579909888, 9.425750353122368022044346281267, 10.60281271894754530288946509840