L(s) = 1 | + (0.491 + 1.32i)2-s + (−2.26 + 1.30i)3-s + (−1.51 + 1.30i)4-s − 5-s + (−2.84 − 2.35i)6-s + (−3.24 − 1.87i)7-s + (−2.47 − 1.37i)8-s + (1.91 − 3.31i)9-s + (−0.491 − 1.32i)10-s + (2.13 + 3.69i)11-s + (1.72 − 4.93i)12-s + (2.92 − 2.11i)13-s + (0.889 − 5.22i)14-s + (2.26 − 1.30i)15-s + (0.600 − 3.95i)16-s + (0.829 − 1.43i)17-s + ⋯ |
L(s) = 1 | + (0.347 + 0.937i)2-s + (−1.30 + 0.754i)3-s + (−0.758 + 0.651i)4-s − 0.447·5-s + (−1.16 − 0.962i)6-s + (−1.22 − 0.708i)7-s + (−0.874 − 0.484i)8-s + (0.637 − 1.10i)9-s + (−0.155 − 0.419i)10-s + (0.643 + 1.11i)11-s + (0.499 − 1.42i)12-s + (0.810 − 0.585i)13-s + (0.237 − 1.39i)14-s + (0.584 − 0.337i)15-s + (0.150 − 0.988i)16-s + (0.201 − 0.348i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 520 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.914 + 0.404i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 520 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.914 + 0.404i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.270927 - 0.0571983i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.270927 - 0.0571983i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.491 - 1.32i)T \) |
| 5 | \( 1 + T \) |
| 13 | \( 1 + (-2.92 + 2.11i)T \) |
good | 3 | \( 1 + (2.26 - 1.30i)T + (1.5 - 2.59i)T^{2} \) |
| 7 | \( 1 + (3.24 + 1.87i)T + (3.5 + 6.06i)T^{2} \) |
| 11 | \( 1 + (-2.13 - 3.69i)T + (-5.5 + 9.52i)T^{2} \) |
| 17 | \( 1 + (-0.829 + 1.43i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (2.21 - 3.83i)T + (-9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (0.329 + 0.570i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (6.59 - 3.80i)T + (14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + 8.51iT - 31T^{2} \) |
| 37 | \( 1 + (3.03 + 5.25i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + (-7.02 + 4.05i)T + (20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (3.74 + 2.16i)T + (21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 - 6.33iT - 47T^{2} \) |
| 53 | \( 1 + 12.5iT - 53T^{2} \) |
| 59 | \( 1 + (-4.08 + 7.07i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (-2.45 - 1.41i)T + (30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (3.38 + 5.86i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + (3.25 + 1.87i)T + (35.5 + 61.4i)T^{2} \) |
| 73 | \( 1 + 4.75iT - 73T^{2} \) |
| 79 | \( 1 + 3.88T + 79T^{2} \) |
| 83 | \( 1 + 3.60T + 83T^{2} \) |
| 89 | \( 1 + (6.57 - 3.79i)T + (44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + (0.424 + 0.244i)T + (48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.74746548829274372039743391564, −9.897979415075370213558539921586, −9.241419599978357716371817810356, −7.80242007164381798885876443450, −6.88973116957410530043458809246, −6.16611311652629933255689206290, −5.33287704853816216501523321200, −4.09485507984778017940535989446, −3.71112327461693255035276046708, −0.19551577413291201373195538252,
1.24932579655261928956693571793, 2.99656649774990977460598628785, 4.08552340909324983813026820419, 5.52751504494864602222434963045, 6.15943824848632883178961465674, 6.82143840202988316405241541161, 8.563220874780506392708111919775, 9.222931053213402748543393042778, 10.44891749266350213027197319921, 11.30437924620381059913433608717