L(s) = 1 | + (0.837 + 1.13i)2-s + (0.654 − 0.377i)3-s + (−0.596 + 1.90i)4-s + 5-s + (0.979 + 0.429i)6-s + (0.518 + 0.299i)7-s + (−2.67 + 0.919i)8-s + (−1.21 + 2.10i)9-s + (0.837 + 1.13i)10-s + (0.495 + 0.858i)11-s + (0.331 + 1.47i)12-s + (1.20 + 3.39i)13-s + (0.0933 + 0.842i)14-s + (0.654 − 0.377i)15-s + (−3.28 − 2.27i)16-s + (3.48 − 6.03i)17-s + ⋯ |
L(s) = 1 | + (0.592 + 0.805i)2-s + (0.377 − 0.218i)3-s + (−0.298 + 0.954i)4-s + 0.447·5-s + (0.399 + 0.175i)6-s + (0.196 + 0.113i)7-s + (−0.945 + 0.325i)8-s + (−0.404 + 0.701i)9-s + (0.264 + 0.360i)10-s + (0.149 + 0.258i)11-s + (0.0955 + 0.425i)12-s + (0.333 + 0.942i)13-s + (0.0249 + 0.225i)14-s + (0.169 − 0.0975i)15-s + (−0.822 − 0.569i)16-s + (0.844 − 1.46i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 520 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.134 - 0.990i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 520 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.134 - 0.990i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.45270 + 1.66278i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.45270 + 1.66278i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.837 - 1.13i)T \) |
| 5 | \( 1 - T \) |
| 13 | \( 1 + (-1.20 - 3.39i)T \) |
good | 3 | \( 1 + (-0.654 + 0.377i)T + (1.5 - 2.59i)T^{2} \) |
| 7 | \( 1 + (-0.518 - 0.299i)T + (3.5 + 6.06i)T^{2} \) |
| 11 | \( 1 + (-0.495 - 0.858i)T + (-5.5 + 9.52i)T^{2} \) |
| 17 | \( 1 + (-3.48 + 6.03i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (2.07 - 3.58i)T + (-9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (-2.57 - 4.45i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (-3.70 + 2.13i)T + (14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + 10.2iT - 31T^{2} \) |
| 37 | \( 1 + (-3.38 - 5.86i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + (1.99 - 1.15i)T + (20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (8.49 + 4.90i)T + (21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + 5.84iT - 47T^{2} \) |
| 53 | \( 1 - 1.02iT - 53T^{2} \) |
| 59 | \( 1 + (-0.213 + 0.369i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (-7.52 - 4.34i)T + (30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (5.26 + 9.12i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + (-2.90 - 1.67i)T + (35.5 + 61.4i)T^{2} \) |
| 73 | \( 1 + 11.3iT - 73T^{2} \) |
| 79 | \( 1 + 1.48T + 79T^{2} \) |
| 83 | \( 1 + 8.05T + 83T^{2} \) |
| 89 | \( 1 + (-4.06 + 2.34i)T + (44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + (-12.6 - 7.29i)T + (48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.54979825765130585681108300201, −9.994268493239625718075127883126, −9.143346112321845899136117940300, −8.224484013592221186814110495124, −7.48556525991064977572672579796, −6.53027187224930783525738117041, −5.51690882932725156534376011194, −4.68941891143661579606073574878, −3.36135918698594022279948546382, −2.11279209398078251222955923284,
1.16230718795732981486476656925, 2.79521532840701270198668978668, 3.57918571676848499655029044445, 4.79371183248212424991486254710, 5.85863557811674839332168235524, 6.61630774153944129744541248598, 8.376111293183044150612990934985, 8.891574601679425744358574564621, 10.04541025319371617172142447494, 10.59565419543725196186088904099