L(s) = 1 | + (0.837 + 1.13i)2-s + (0.654 − 0.377i)3-s + (−0.596 + 1.90i)4-s + 5-s + (0.979 + 0.429i)6-s + (0.518 + 0.299i)7-s + (−2.67 + 0.919i)8-s + (−1.21 + 2.10i)9-s + (0.837 + 1.13i)10-s + (0.495 + 0.858i)11-s + (0.331 + 1.47i)12-s + (1.20 + 3.39i)13-s + (0.0933 + 0.842i)14-s + (0.654 − 0.377i)15-s + (−3.28 − 2.27i)16-s + (3.48 − 6.03i)17-s + ⋯ |
L(s) = 1 | + (0.592 + 0.805i)2-s + (0.377 − 0.218i)3-s + (−0.298 + 0.954i)4-s + 0.447·5-s + (0.399 + 0.175i)6-s + (0.196 + 0.113i)7-s + (−0.945 + 0.325i)8-s + (−0.404 + 0.701i)9-s + (0.264 + 0.360i)10-s + (0.149 + 0.258i)11-s + (0.0955 + 0.425i)12-s + (0.333 + 0.942i)13-s + (0.0249 + 0.225i)14-s + (0.169 − 0.0975i)15-s + (−0.822 − 0.569i)16-s + (0.844 − 1.46i)17-s + ⋯ |
Λ(s)=(=(520s/2ΓC(s)L(s)(−0.134−0.990i)Λ(2−s)
Λ(s)=(=(520s/2ΓC(s+1/2)L(s)(−0.134−0.990i)Λ(1−s)
Degree: |
2 |
Conductor: |
520
= 23⋅5⋅13
|
Sign: |
−0.134−0.990i
|
Analytic conductor: |
4.15222 |
Root analytic conductor: |
2.03769 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ520(101,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 520, ( :1/2), −0.134−0.990i)
|
Particular Values
L(1) |
≈ |
1.45270+1.66278i |
L(21) |
≈ |
1.45270+1.66278i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−0.837−1.13i)T |
| 5 | 1−T |
| 13 | 1+(−1.20−3.39i)T |
good | 3 | 1+(−0.654+0.377i)T+(1.5−2.59i)T2 |
| 7 | 1+(−0.518−0.299i)T+(3.5+6.06i)T2 |
| 11 | 1+(−0.495−0.858i)T+(−5.5+9.52i)T2 |
| 17 | 1+(−3.48+6.03i)T+(−8.5−14.7i)T2 |
| 19 | 1+(2.07−3.58i)T+(−9.5−16.4i)T2 |
| 23 | 1+(−2.57−4.45i)T+(−11.5+19.9i)T2 |
| 29 | 1+(−3.70+2.13i)T+(14.5−25.1i)T2 |
| 31 | 1+10.2iT−31T2 |
| 37 | 1+(−3.38−5.86i)T+(−18.5+32.0i)T2 |
| 41 | 1+(1.99−1.15i)T+(20.5−35.5i)T2 |
| 43 | 1+(8.49+4.90i)T+(21.5+37.2i)T2 |
| 47 | 1+5.84iT−47T2 |
| 53 | 1−1.02iT−53T2 |
| 59 | 1+(−0.213+0.369i)T+(−29.5−51.0i)T2 |
| 61 | 1+(−7.52−4.34i)T+(30.5+52.8i)T2 |
| 67 | 1+(5.26+9.12i)T+(−33.5+58.0i)T2 |
| 71 | 1+(−2.90−1.67i)T+(35.5+61.4i)T2 |
| 73 | 1+11.3iT−73T2 |
| 79 | 1+1.48T+79T2 |
| 83 | 1+8.05T+83T2 |
| 89 | 1+(−4.06+2.34i)T+(44.5−77.0i)T2 |
| 97 | 1+(−12.6−7.29i)T+(48.5+84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.54979825765130585681108300201, −9.994268493239625718075127883126, −9.143346112321845899136117940300, −8.224484013592221186814110495124, −7.48556525991064977572672579796, −6.53027187224930783525738117041, −5.51690882932725156534376011194, −4.68941891143661579606073574878, −3.36135918698594022279948546382, −2.11279209398078251222955923284,
1.16230718795732981486476656925, 2.79521532840701270198668978668, 3.57918571676848499655029044445, 4.79371183248212424991486254710, 5.85863557811674839332168235524, 6.61630774153944129744541248598, 8.376111293183044150612990934985, 8.891574601679425744358574564621, 10.04541025319371617172142447494, 10.59565419543725196186088904099