L(s) = 1 | + (1.41 − 0.0361i)2-s + (−2.77 + 1.60i)3-s + (1.99 − 0.102i)4-s + 5-s + (−3.87 + 2.36i)6-s + (1.83 + 1.06i)7-s + (2.82 − 0.216i)8-s + (3.64 − 6.31i)9-s + (1.41 − 0.0361i)10-s + (1.08 + 1.88i)11-s + (−5.38 + 3.48i)12-s + (−0.138 − 3.60i)13-s + (2.63 + 1.43i)14-s + (−2.77 + 1.60i)15-s + (3.97 − 0.407i)16-s + (−3.44 + 5.97i)17-s + ⋯ |
L(s) = 1 | + (0.999 − 0.0255i)2-s + (−1.60 + 0.926i)3-s + (0.998 − 0.0510i)4-s + 0.447·5-s + (−1.58 + 0.966i)6-s + (0.695 + 0.401i)7-s + (0.997 − 0.0765i)8-s + (1.21 − 2.10i)9-s + (0.447 − 0.0114i)10-s + (0.328 + 0.568i)11-s + (−1.55 + 1.00i)12-s + (−0.0385 − 0.999i)13-s + (0.705 + 0.383i)14-s + (−0.717 + 0.414i)15-s + (0.994 − 0.101i)16-s + (−0.836 + 1.44i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 520 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.408 - 0.912i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 520 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.408 - 0.912i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.60392 + 1.03887i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.60392 + 1.03887i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-1.41 + 0.0361i)T \) |
| 5 | \( 1 - T \) |
| 13 | \( 1 + (0.138 + 3.60i)T \) |
good | 3 | \( 1 + (2.77 - 1.60i)T + (1.5 - 2.59i)T^{2} \) |
| 7 | \( 1 + (-1.83 - 1.06i)T + (3.5 + 6.06i)T^{2} \) |
| 11 | \( 1 + (-1.08 - 1.88i)T + (-5.5 + 9.52i)T^{2} \) |
| 17 | \( 1 + (3.44 - 5.97i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (1.91 - 3.30i)T + (-9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (-3.82 - 6.63i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (-1.73 + 1.00i)T + (14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + 7.18iT - 31T^{2} \) |
| 37 | \( 1 + (-2.98 - 5.16i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + (1.20 - 0.694i)T + (20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (6.91 + 3.99i)T + (21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + 1.65iT - 47T^{2} \) |
| 53 | \( 1 + 8.68iT - 53T^{2} \) |
| 59 | \( 1 + (-4.70 + 8.14i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (0.984 + 0.568i)T + (30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (-4.36 - 7.55i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + (-0.113 - 0.0655i)T + (35.5 + 61.4i)T^{2} \) |
| 73 | \( 1 - 3.75iT - 73T^{2} \) |
| 79 | \( 1 + 11.3T + 79T^{2} \) |
| 83 | \( 1 + 11.5T + 83T^{2} \) |
| 89 | \( 1 + (-11.9 + 6.89i)T + (44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + (-0.694 - 0.400i)T + (48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.33521552723940323353287311888, −10.31836500760293413959506495788, −9.866370606117120000299570847472, −8.287576067553610957270472771307, −6.86256690928652443756448637075, −5.99349772912387576106233753578, −5.41136870771025240743972525159, −4.60133243247408464192148651683, −3.67088096509626606233666429729, −1.70933462277398731718714744397,
1.13420540021847292407329481102, 2.43973080490837302899662171258, 4.63310247181587119922070155702, 4.90955825187276654290819855878, 6.18230956489290559517201579179, 6.76610689811139623638332370579, 7.34793509026718400454116334498, 8.832180528683623896362760018171, 10.47346351703949479980330432415, 11.14205118014245319640860163496