Properties

Label 2-520-104.101-c1-0-21
Degree 22
Conductor 520520
Sign 0.4080.912i0.408 - 0.912i
Analytic cond. 4.152224.15222
Root an. cond. 2.037692.03769
Motivic weight 11
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (1.41 − 0.0361i)2-s + (−2.77 + 1.60i)3-s + (1.99 − 0.102i)4-s + 5-s + (−3.87 + 2.36i)6-s + (1.83 + 1.06i)7-s + (2.82 − 0.216i)8-s + (3.64 − 6.31i)9-s + (1.41 − 0.0361i)10-s + (1.08 + 1.88i)11-s + (−5.38 + 3.48i)12-s + (−0.138 − 3.60i)13-s + (2.63 + 1.43i)14-s + (−2.77 + 1.60i)15-s + (3.97 − 0.407i)16-s + (−3.44 + 5.97i)17-s + ⋯
L(s)  = 1  + (0.999 − 0.0255i)2-s + (−1.60 + 0.926i)3-s + (0.998 − 0.0510i)4-s + 0.447·5-s + (−1.58 + 0.966i)6-s + (0.695 + 0.401i)7-s + (0.997 − 0.0765i)8-s + (1.21 − 2.10i)9-s + (0.447 − 0.0114i)10-s + (0.328 + 0.568i)11-s + (−1.55 + 1.00i)12-s + (−0.0385 − 0.999i)13-s + (0.705 + 0.383i)14-s + (−0.717 + 0.414i)15-s + (0.994 − 0.101i)16-s + (−0.836 + 1.44i)17-s + ⋯

Functional equation

Λ(s)=(520s/2ΓC(s)L(s)=((0.4080.912i)Λ(2s)\begin{aligned}\Lambda(s)=\mathstrut & 520 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.408 - 0.912i)\, \overline{\Lambda}(2-s) \end{aligned}
Λ(s)=(520s/2ΓC(s+1/2)L(s)=((0.4080.912i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 520 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.408 - 0.912i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 22
Conductor: 520520    =    235132^{3} \cdot 5 \cdot 13
Sign: 0.4080.912i0.408 - 0.912i
Analytic conductor: 4.152224.15222
Root analytic conductor: 2.037692.03769
Motivic weight: 11
Rational: no
Arithmetic: yes
Character: χ520(101,)\chi_{520} (101, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (2, 520, ( :1/2), 0.4080.912i)(2,\ 520,\ (\ :1/2),\ 0.408 - 0.912i)

Particular Values

L(1)L(1) \approx 1.60392+1.03887i1.60392 + 1.03887i
L(12)L(\frac12) \approx 1.60392+1.03887i1.60392 + 1.03887i
L(32)L(\frac{3}{2}) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad2 1+(1.41+0.0361i)T 1 + (-1.41 + 0.0361i)T
5 1T 1 - T
13 1+(0.138+3.60i)T 1 + (0.138 + 3.60i)T
good3 1+(2.771.60i)T+(1.52.59i)T2 1 + (2.77 - 1.60i)T + (1.5 - 2.59i)T^{2}
7 1+(1.831.06i)T+(3.5+6.06i)T2 1 + (-1.83 - 1.06i)T + (3.5 + 6.06i)T^{2}
11 1+(1.081.88i)T+(5.5+9.52i)T2 1 + (-1.08 - 1.88i)T + (-5.5 + 9.52i)T^{2}
17 1+(3.445.97i)T+(8.514.7i)T2 1 + (3.44 - 5.97i)T + (-8.5 - 14.7i)T^{2}
19 1+(1.913.30i)T+(9.516.4i)T2 1 + (1.91 - 3.30i)T + (-9.5 - 16.4i)T^{2}
23 1+(3.826.63i)T+(11.5+19.9i)T2 1 + (-3.82 - 6.63i)T + (-11.5 + 19.9i)T^{2}
29 1+(1.73+1.00i)T+(14.525.1i)T2 1 + (-1.73 + 1.00i)T + (14.5 - 25.1i)T^{2}
31 1+7.18iT31T2 1 + 7.18iT - 31T^{2}
37 1+(2.985.16i)T+(18.5+32.0i)T2 1 + (-2.98 - 5.16i)T + (-18.5 + 32.0i)T^{2}
41 1+(1.200.694i)T+(20.535.5i)T2 1 + (1.20 - 0.694i)T + (20.5 - 35.5i)T^{2}
43 1+(6.91+3.99i)T+(21.5+37.2i)T2 1 + (6.91 + 3.99i)T + (21.5 + 37.2i)T^{2}
47 1+1.65iT47T2 1 + 1.65iT - 47T^{2}
53 1+8.68iT53T2 1 + 8.68iT - 53T^{2}
59 1+(4.70+8.14i)T+(29.551.0i)T2 1 + (-4.70 + 8.14i)T + (-29.5 - 51.0i)T^{2}
61 1+(0.984+0.568i)T+(30.5+52.8i)T2 1 + (0.984 + 0.568i)T + (30.5 + 52.8i)T^{2}
67 1+(4.367.55i)T+(33.5+58.0i)T2 1 + (-4.36 - 7.55i)T + (-33.5 + 58.0i)T^{2}
71 1+(0.1130.0655i)T+(35.5+61.4i)T2 1 + (-0.113 - 0.0655i)T + (35.5 + 61.4i)T^{2}
73 13.75iT73T2 1 - 3.75iT - 73T^{2}
79 1+11.3T+79T2 1 + 11.3T + 79T^{2}
83 1+11.5T+83T2 1 + 11.5T + 83T^{2}
89 1+(11.9+6.89i)T+(44.577.0i)T2 1 + (-11.9 + 6.89i)T + (44.5 - 77.0i)T^{2}
97 1+(0.6940.400i)T+(48.5+84.0i)T2 1 + (-0.694 - 0.400i)T + (48.5 + 84.0i)T^{2}
show more
show less
   L(s)=p j=12(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−11.33521552723940323353287311888, −10.31836500760293413959506495788, −9.866370606117120000299570847472, −8.287576067553610957270472771307, −6.86256690928652443756448637075, −5.99349772912387576106233753578, −5.41136870771025240743972525159, −4.60133243247408464192148651683, −3.67088096509626606233666429729, −1.70933462277398731718714744397, 1.13420540021847292407329481102, 2.43973080490837302899662171258, 4.63310247181587119922070155702, 4.90955825187276654290819855878, 6.18230956489290559517201579179, 6.76610689811139623638332370579, 7.34793509026718400454116334498, 8.832180528683623896362760018171, 10.47346351703949479980330432415, 11.14205118014245319640860163496

Graph of the ZZ-function along the critical line