L(s) = 1 | + (0.237 − 1.39i)2-s + (−0.158 + 0.0913i)3-s + (−1.88 − 0.661i)4-s − 5-s + (0.0898 + 0.242i)6-s + (2.61 + 1.50i)7-s + (−1.36 + 2.47i)8-s + (−1.48 + 2.56i)9-s + (−0.237 + 1.39i)10-s + (1.37 + 2.38i)11-s + (0.358 − 0.0677i)12-s + (2.87 + 2.17i)13-s + (2.72 − 3.28i)14-s + (0.158 − 0.0913i)15-s + (3.12 + 2.49i)16-s + (1.19 − 2.06i)17-s + ⋯ |
L(s) = 1 | + (0.167 − 0.985i)2-s + (−0.0913 + 0.0527i)3-s + (−0.943 − 0.330i)4-s − 0.447·5-s + (0.0366 + 0.0988i)6-s + (0.987 + 0.570i)7-s + (−0.484 + 0.875i)8-s + (−0.494 + 0.856i)9-s + (−0.0749 + 0.440i)10-s + (0.415 + 0.720i)11-s + (0.103 − 0.0195i)12-s + (0.797 + 0.603i)13-s + (0.727 − 0.877i)14-s + (0.0408 − 0.0235i)15-s + (0.781 + 0.623i)16-s + (0.289 − 0.501i)17-s + ⋯ |
Λ(s)=(=(520s/2ΓC(s)L(s)(0.993+0.118i)Λ(2−s)
Λ(s)=(=(520s/2ΓC(s+1/2)L(s)(0.993+0.118i)Λ(1−s)
Degree: |
2 |
Conductor: |
520
= 23⋅5⋅13
|
Sign: |
0.993+0.118i
|
Analytic conductor: |
4.15222 |
Root analytic conductor: |
2.03769 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ520(101,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 520, ( :1/2), 0.993+0.118i)
|
Particular Values
L(1) |
≈ |
1.31959−0.0781510i |
L(21) |
≈ |
1.31959−0.0781510i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−0.237+1.39i)T |
| 5 | 1+T |
| 13 | 1+(−2.87−2.17i)T |
good | 3 | 1+(0.158−0.0913i)T+(1.5−2.59i)T2 |
| 7 | 1+(−2.61−1.50i)T+(3.5+6.06i)T2 |
| 11 | 1+(−1.37−2.38i)T+(−5.5+9.52i)T2 |
| 17 | 1+(−1.19+2.06i)T+(−8.5−14.7i)T2 |
| 19 | 1+(−0.343+0.594i)T+(−9.5−16.4i)T2 |
| 23 | 1+(1.16+2.01i)T+(−11.5+19.9i)T2 |
| 29 | 1+(2.86−1.65i)T+(14.5−25.1i)T2 |
| 31 | 1−2.49iT−31T2 |
| 37 | 1+(−3.59−6.22i)T+(−18.5+32.0i)T2 |
| 41 | 1+(−8.68+5.01i)T+(20.5−35.5i)T2 |
| 43 | 1+(1.97+1.14i)T+(21.5+37.2i)T2 |
| 47 | 1−8.99iT−47T2 |
| 53 | 1−6.03iT−53T2 |
| 59 | 1+(−0.982+1.70i)T+(−29.5−51.0i)T2 |
| 61 | 1+(−12.4−7.21i)T+(30.5+52.8i)T2 |
| 67 | 1+(0.739+1.28i)T+(−33.5+58.0i)T2 |
| 71 | 1+(13.5+7.84i)T+(35.5+61.4i)T2 |
| 73 | 1−4.24iT−73T2 |
| 79 | 1+5.23T+79T2 |
| 83 | 1+14.6T+83T2 |
| 89 | 1+(−10.0+5.81i)T+(44.5−77.0i)T2 |
| 97 | 1+(6.21+3.58i)T+(48.5+84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.17662373314975107241282859716, −10.19157490418017897412217524859, −9.062464277522296923318190634739, −8.451826244022722488054280958337, −7.47350138410728617507771316830, −5.90457018776185774163657201330, −4.90562802271531819916375181964, −4.18616146067379012710960316355, −2.71750927550869708420116777200, −1.56059174048572509506572036328,
0.858764928759839820817049746159, 3.48608525380979404988167730970, 4.15301978484542968518559144335, 5.53957228331809691602870182419, 6.17737520136635939200968803590, 7.34858936186787290025511406428, 8.150023278615169965598520672247, 8.725770890127479443618458136566, 9.828408363611299247219310813864, 11.09564678919432019147933830769