L(s) = 1 | + (−0.615 − 1.27i)2-s + (−0.127 + 0.0734i)3-s + (−1.24 + 1.56i)4-s + 5-s + (0.171 + 0.116i)6-s + (−2.93 − 1.69i)7-s + (2.76 + 0.617i)8-s + (−1.48 + 2.57i)9-s + (−0.615 − 1.27i)10-s + (2.72 + 4.72i)11-s + (0.0429 − 0.290i)12-s + (1.96 − 3.01i)13-s + (−0.351 + 4.78i)14-s + (−0.127 + 0.0734i)15-s + (−0.911 − 3.89i)16-s + (−0.605 + 1.04i)17-s + ⋯ |
L(s) = 1 | + (−0.435 − 0.900i)2-s + (−0.0734 + 0.0423i)3-s + (−0.621 + 0.783i)4-s + 0.447·5-s + (0.0701 + 0.0476i)6-s + (−1.11 − 0.640i)7-s + (0.975 + 0.218i)8-s + (−0.496 + 0.859i)9-s + (−0.194 − 0.402i)10-s + (0.821 + 1.42i)11-s + (0.0124 − 0.0838i)12-s + (0.546 − 0.837i)13-s + (−0.0940 + 1.27i)14-s + (−0.0328 + 0.0189i)15-s + (−0.227 − 0.973i)16-s + (−0.146 + 0.254i)17-s + ⋯ |
Λ(s)=(=(520s/2ΓC(s)L(s)(0.972−0.233i)Λ(2−s)
Λ(s)=(=(520s/2ΓC(s+1/2)L(s)(0.972−0.233i)Λ(1−s)
Degree: |
2 |
Conductor: |
520
= 23⋅5⋅13
|
Sign: |
0.972−0.233i
|
Analytic conductor: |
4.15222 |
Root analytic conductor: |
2.03769 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ520(101,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 520, ( :1/2), 0.972−0.233i)
|
Particular Values
L(1) |
≈ |
0.919689+0.109110i |
L(21) |
≈ |
0.919689+0.109110i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.615+1.27i)T |
| 5 | 1−T |
| 13 | 1+(−1.96+3.01i)T |
good | 3 | 1+(0.127−0.0734i)T+(1.5−2.59i)T2 |
| 7 | 1+(2.93+1.69i)T+(3.5+6.06i)T2 |
| 11 | 1+(−2.72−4.72i)T+(−5.5+9.52i)T2 |
| 17 | 1+(0.605−1.04i)T+(−8.5−14.7i)T2 |
| 19 | 1+(1.73−3.00i)T+(−9.5−16.4i)T2 |
| 23 | 1+(−3.76−6.52i)T+(−11.5+19.9i)T2 |
| 29 | 1+(−6.10+3.52i)T+(14.5−25.1i)T2 |
| 31 | 1−7.60iT−31T2 |
| 37 | 1+(−3.82−6.62i)T+(−18.5+32.0i)T2 |
| 41 | 1+(−3.47+2.00i)T+(20.5−35.5i)T2 |
| 43 | 1+(1.45+0.841i)T+(21.5+37.2i)T2 |
| 47 | 1+0.231iT−47T2 |
| 53 | 1+5.16iT−53T2 |
| 59 | 1+(1.57−2.73i)T+(−29.5−51.0i)T2 |
| 61 | 1+(−7.73−4.46i)T+(30.5+52.8i)T2 |
| 67 | 1+(4.31+7.46i)T+(−33.5+58.0i)T2 |
| 71 | 1+(13.9+8.05i)T+(35.5+61.4i)T2 |
| 73 | 1−10.1iT−73T2 |
| 79 | 1−6.72T+79T2 |
| 83 | 1−5.31T+83T2 |
| 89 | 1+(8.75−5.05i)T+(44.5−77.0i)T2 |
| 97 | 1+(−7.23−4.17i)T+(48.5+84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.61053363384611251462164927713, −10.14391725509547188687931430295, −9.438424660600124487287438869534, −8.428400044393655265662666919493, −7.42128913618075521812661889681, −6.42832018732874668654135931764, −5.05859554439950563673135243455, −3.91078642967024155841616901044, −2.85093360255977855582699811153, −1.43739499758107553542587657083,
0.70482798845407586880106934171, 2.87086380099769589696957779339, 4.23478062363591679304462358788, 5.77316163353839840285157021592, 6.33380313077150501699720047014, 6.78105655766776464751469306996, 8.508426688111045688884127249452, 9.043382240712240118277642028403, 9.442793546171058397160939944775, 10.75229998936710925501384024730