L(s) = 1 | + (−0.936 − 1.05i)2-s + (0.700 − 0.404i)3-s + (−0.245 + 1.98i)4-s − 5-s + (−1.08 − 0.363i)6-s + (3.38 + 1.95i)7-s + (2.33 − 1.59i)8-s + (−1.17 + 2.03i)9-s + (0.936 + 1.05i)10-s + (−0.223 − 0.387i)11-s + (0.630 + 1.48i)12-s + (−3.01 + 1.98i)13-s + (−1.09 − 5.41i)14-s + (−0.700 + 0.404i)15-s + (−3.87 − 0.975i)16-s + (−4.00 + 6.94i)17-s + ⋯ |
L(s) = 1 | + (−0.662 − 0.749i)2-s + (0.404 − 0.233i)3-s + (−0.122 + 0.992i)4-s − 0.447·5-s + (−0.442 − 0.148i)6-s + (1.27 + 0.737i)7-s + (0.824 − 0.565i)8-s + (−0.390 + 0.677i)9-s + (0.296 + 0.335i)10-s + (−0.0674 − 0.116i)11-s + (0.182 + 0.429i)12-s + (−0.835 + 0.550i)13-s + (−0.293 − 1.44i)14-s + (−0.180 + 0.104i)15-s + (−0.969 − 0.243i)16-s + (−0.972 + 1.68i)17-s + ⋯ |
Λ(s)=(=(520s/2ΓC(s)L(s)(0.798−0.602i)Λ(2−s)
Λ(s)=(=(520s/2ΓC(s+1/2)L(s)(0.798−0.602i)Λ(1−s)
Degree: |
2 |
Conductor: |
520
= 23⋅5⋅13
|
Sign: |
0.798−0.602i
|
Analytic conductor: |
4.15222 |
Root analytic conductor: |
2.03769 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ520(101,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 520, ( :1/2), 0.798−0.602i)
|
Particular Values
L(1) |
≈ |
0.929456+0.311530i |
L(21) |
≈ |
0.929456+0.311530i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.936+1.05i)T |
| 5 | 1+T |
| 13 | 1+(3.01−1.98i)T |
good | 3 | 1+(−0.700+0.404i)T+(1.5−2.59i)T2 |
| 7 | 1+(−3.38−1.95i)T+(3.5+6.06i)T2 |
| 11 | 1+(0.223+0.387i)T+(−5.5+9.52i)T2 |
| 17 | 1+(4.00−6.94i)T+(−8.5−14.7i)T2 |
| 19 | 1+(0.861−1.49i)T+(−9.5−16.4i)T2 |
| 23 | 1+(0.570+0.987i)T+(−11.5+19.9i)T2 |
| 29 | 1+(−8.04+4.64i)T+(14.5−25.1i)T2 |
| 31 | 1−5.19iT−31T2 |
| 37 | 1+(−2.59−4.49i)T+(−18.5+32.0i)T2 |
| 41 | 1+(−4.37+2.52i)T+(20.5−35.5i)T2 |
| 43 | 1+(−0.587−0.339i)T+(21.5+37.2i)T2 |
| 47 | 1+8.71iT−47T2 |
| 53 | 1+11.8iT−53T2 |
| 59 | 1+(4.67−8.08i)T+(−29.5−51.0i)T2 |
| 61 | 1+(6.84+3.95i)T+(30.5+52.8i)T2 |
| 67 | 1+(−5.35−9.28i)T+(−33.5+58.0i)T2 |
| 71 | 1+(−9.05−5.22i)T+(35.5+61.4i)T2 |
| 73 | 1+0.118iT−73T2 |
| 79 | 1−17.2T+79T2 |
| 83 | 1+10.1T+83T2 |
| 89 | 1+(−7.70+4.44i)T+(44.5−77.0i)T2 |
| 97 | 1+(−7.84−4.52i)T+(48.5+84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.96678295177877004565976040554, −10.26139618414909694536028155055, −8.928446254991227496480295361799, −8.281415536984953503996108191136, −7.964334717197227269386762879328, −6.65935789110566449628648746342, −5.03710532009695412511461726179, −4.12293812148106245898870592775, −2.55173997710747352536748535804, −1.80113142926449682062276100195,
0.69494584163210744270133801393, 2.61260153065509351850543415118, 4.41973782787157175483890653159, 4.98867686768257298871893604743, 6.44234904459110498052870950549, 7.49190665356538568492936930104, 7.917767746418074018194618160653, 8.993965614441257258868738626768, 9.589197860613989273250270050643, 10.78357132284896250865813704853