L(s) = 1 | + (−1.24 − 0.669i)2-s + (−2.59 + 1.49i)3-s + (1.10 + 1.66i)4-s − 5-s + (4.23 − 0.128i)6-s + (−0.668 − 0.385i)7-s + (−0.257 − 2.81i)8-s + (2.98 − 5.16i)9-s + (1.24 + 0.669i)10-s + (0.183 + 0.317i)11-s + (−5.35 − 2.67i)12-s + (−2.71 − 2.36i)13-s + (0.574 + 0.928i)14-s + (2.59 − 1.49i)15-s + (−1.56 + 3.68i)16-s + (1.37 − 2.37i)17-s + ⋯ |
L(s) = 1 | + (−0.880 − 0.473i)2-s + (−1.49 + 0.864i)3-s + (0.551 + 0.834i)4-s − 0.447·5-s + (1.72 − 0.0525i)6-s + (−0.252 − 0.145i)7-s + (−0.0911 − 0.995i)8-s + (0.994 − 1.72i)9-s + (0.393 + 0.211i)10-s + (0.0552 + 0.0956i)11-s + (−1.54 − 0.771i)12-s + (−0.753 − 0.657i)13-s + (0.153 + 0.248i)14-s + (0.669 − 0.386i)15-s + (−0.391 + 0.920i)16-s + (0.332 − 0.575i)17-s + ⋯ |
Λ(s)=(=(520s/2ΓC(s)L(s)(0.917−0.397i)Λ(2−s)
Λ(s)=(=(520s/2ΓC(s+1/2)L(s)(0.917−0.397i)Λ(1−s)
Degree: |
2 |
Conductor: |
520
= 23⋅5⋅13
|
Sign: |
0.917−0.397i
|
Analytic conductor: |
4.15222 |
Root analytic conductor: |
2.03769 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ520(101,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 520, ( :1/2), 0.917−0.397i)
|
Particular Values
L(1) |
≈ |
0.399823+0.0828691i |
L(21) |
≈ |
0.399823+0.0828691i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(1.24+0.669i)T |
| 5 | 1+T |
| 13 | 1+(2.71+2.36i)T |
good | 3 | 1+(2.59−1.49i)T+(1.5−2.59i)T2 |
| 7 | 1+(0.668+0.385i)T+(3.5+6.06i)T2 |
| 11 | 1+(−0.183−0.317i)T+(−5.5+9.52i)T2 |
| 17 | 1+(−1.37+2.37i)T+(−8.5−14.7i)T2 |
| 19 | 1+(0.199−0.345i)T+(−9.5−16.4i)T2 |
| 23 | 1+(0.390+0.676i)T+(−11.5+19.9i)T2 |
| 29 | 1+(−1.82+1.05i)T+(14.5−25.1i)T2 |
| 31 | 1−9.83iT−31T2 |
| 37 | 1+(−4.55−7.88i)T+(−18.5+32.0i)T2 |
| 41 | 1+(−6.57+3.79i)T+(20.5−35.5i)T2 |
| 43 | 1+(−5.38−3.10i)T+(21.5+37.2i)T2 |
| 47 | 1−8.57iT−47T2 |
| 53 | 1+4.85iT−53T2 |
| 59 | 1+(−6.27+10.8i)T+(−29.5−51.0i)T2 |
| 61 | 1+(−1.23−0.712i)T+(30.5+52.8i)T2 |
| 67 | 1+(−2.10−3.63i)T+(−33.5+58.0i)T2 |
| 71 | 1+(−1.22−0.707i)T+(35.5+61.4i)T2 |
| 73 | 1−16.3iT−73T2 |
| 79 | 1+4.89T+79T2 |
| 83 | 1−2.70T+83T2 |
| 89 | 1+(10.0−5.82i)T+(44.5−77.0i)T2 |
| 97 | 1+(−11.2−6.48i)T+(48.5+84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.92965539200928051049301081009, −10.02015324749927022610244460372, −9.687749270966646275447590009993, −8.391046963813284686333732205388, −7.27803871036506343188789810422, −6.44159044929553179640209603234, −5.22339292356978175674787377440, −4.24187551814913355895296024280, −3.02832494781368753241627728914, −0.75287887081118375401535926109,
0.64134454576838714749813726514, 2.15262117236275886992444410208, 4.48862053096954855986474601595, 5.71999483110753094163265802037, 6.23982683455060525040749905597, 7.28978094072647894073211456724, 7.71352832253405875316080711042, 9.024609824169323005593419231669, 10.02051018443913870652362499786, 10.93231433691617764792891963728