L(s) = 1 | + (−1.24 − 0.669i)2-s + (−2.59 + 1.49i)3-s + (1.10 + 1.66i)4-s − 5-s + (4.23 − 0.128i)6-s + (−0.668 − 0.385i)7-s + (−0.257 − 2.81i)8-s + (2.98 − 5.16i)9-s + (1.24 + 0.669i)10-s + (0.183 + 0.317i)11-s + (−5.35 − 2.67i)12-s + (−2.71 − 2.36i)13-s + (0.574 + 0.928i)14-s + (2.59 − 1.49i)15-s + (−1.56 + 3.68i)16-s + (1.37 − 2.37i)17-s + ⋯ |
L(s) = 1 | + (−0.880 − 0.473i)2-s + (−1.49 + 0.864i)3-s + (0.551 + 0.834i)4-s − 0.447·5-s + (1.72 − 0.0525i)6-s + (−0.252 − 0.145i)7-s + (−0.0911 − 0.995i)8-s + (0.994 − 1.72i)9-s + (0.393 + 0.211i)10-s + (0.0552 + 0.0956i)11-s + (−1.54 − 0.771i)12-s + (−0.753 − 0.657i)13-s + (0.153 + 0.248i)14-s + (0.669 − 0.386i)15-s + (−0.391 + 0.920i)16-s + (0.332 − 0.575i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 520 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.917 - 0.397i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 520 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.917 - 0.397i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.399823 + 0.0828691i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.399823 + 0.0828691i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (1.24 + 0.669i)T \) |
| 5 | \( 1 + T \) |
| 13 | \( 1 + (2.71 + 2.36i)T \) |
good | 3 | \( 1 + (2.59 - 1.49i)T + (1.5 - 2.59i)T^{2} \) |
| 7 | \( 1 + (0.668 + 0.385i)T + (3.5 + 6.06i)T^{2} \) |
| 11 | \( 1 + (-0.183 - 0.317i)T + (-5.5 + 9.52i)T^{2} \) |
| 17 | \( 1 + (-1.37 + 2.37i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (0.199 - 0.345i)T + (-9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (0.390 + 0.676i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (-1.82 + 1.05i)T + (14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 - 9.83iT - 31T^{2} \) |
| 37 | \( 1 + (-4.55 - 7.88i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + (-6.57 + 3.79i)T + (20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (-5.38 - 3.10i)T + (21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 - 8.57iT - 47T^{2} \) |
| 53 | \( 1 + 4.85iT - 53T^{2} \) |
| 59 | \( 1 + (-6.27 + 10.8i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (-1.23 - 0.712i)T + (30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (-2.10 - 3.63i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + (-1.22 - 0.707i)T + (35.5 + 61.4i)T^{2} \) |
| 73 | \( 1 - 16.3iT - 73T^{2} \) |
| 79 | \( 1 + 4.89T + 79T^{2} \) |
| 83 | \( 1 - 2.70T + 83T^{2} \) |
| 89 | \( 1 + (10.0 - 5.82i)T + (44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + (-11.2 - 6.48i)T + (48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.92965539200928051049301081009, −10.02015324749927022610244460372, −9.687749270966646275447590009993, −8.391046963813284686333732205388, −7.27803871036506343188789810422, −6.44159044929553179640209603234, −5.22339292356978175674787377440, −4.24187551814913355895296024280, −3.02832494781368753241627728914, −0.75287887081118375401535926109,
0.64134454576838714749813726514, 2.15262117236275886992444410208, 4.48862053096954855986474601595, 5.71999483110753094163265802037, 6.23982683455060525040749905597, 7.28978094072647894073211456724, 7.71352832253405875316080711042, 9.024609824169323005593419231669, 10.02051018443913870652362499786, 10.93231433691617764792891963728