L(s) = 1 | + 2.44·3-s + 5-s + 2·7-s + 2.99·9-s + 0.449·11-s − 13-s + 2.44·15-s − 2.89·17-s − 4.44·19-s + 4.89·21-s + 1.55·23-s + 25-s + 4·29-s + 0.449·31-s + 1.10·33-s + 2·35-s − 4.89·37-s − 2.44·39-s + 1.10·41-s − 3.34·43-s + 2.99·45-s − 2·47-s − 3·49-s − 7.10·51-s + 10.8·53-s + 0.449·55-s − 10.8·57-s + ⋯ |
L(s) = 1 | + 1.41·3-s + 0.447·5-s + 0.755·7-s + 0.999·9-s + 0.135·11-s − 0.277·13-s + 0.632·15-s − 0.703·17-s − 1.02·19-s + 1.06·21-s + 0.323·23-s + 0.200·25-s + 0.742·29-s + 0.0807·31-s + 0.191·33-s + 0.338·35-s − 0.805·37-s − 0.392·39-s + 0.171·41-s − 0.510·43-s + 0.447·45-s − 0.291·47-s − 0.428·49-s − 0.994·51-s + 1.49·53-s + 0.0606·55-s − 1.44·57-s + ⋯ |
Λ(s)=(=(520s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(520s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
2.473673598 |
L(21) |
≈ |
2.473673598 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1−T |
| 13 | 1+T |
good | 3 | 1−2.44T+3T2 |
| 7 | 1−2T+7T2 |
| 11 | 1−0.449T+11T2 |
| 17 | 1+2.89T+17T2 |
| 19 | 1+4.44T+19T2 |
| 23 | 1−1.55T+23T2 |
| 29 | 1−4T+29T2 |
| 31 | 1−0.449T+31T2 |
| 37 | 1+4.89T+37T2 |
| 41 | 1−1.10T+41T2 |
| 43 | 1+3.34T+43T2 |
| 47 | 1+2T+47T2 |
| 53 | 1−10.8T+53T2 |
| 59 | 1+5.34T+59T2 |
| 61 | 1−13.7T+61T2 |
| 67 | 1+14.8T+67T2 |
| 71 | 1+8.44T+71T2 |
| 73 | 1−14.6T+73T2 |
| 79 | 1+4.89T+79T2 |
| 83 | 1−2T+83T2 |
| 89 | 1−6T+89T2 |
| 97 | 1+11.7T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.70525758672027089757299013829, −9.855490631365725808039136213883, −8.828004100374299851941654892946, −8.468772761594242766495781029739, −7.45021289498554912174980419510, −6.45042225654760342330317057616, −5.04198320919738406846616321643, −4.01831226697534092421927954877, −2.72510253910502481469015184697, −1.80293423917785422604569313169,
1.80293423917785422604569313169, 2.72510253910502481469015184697, 4.01831226697534092421927954877, 5.04198320919738406846616321643, 6.45042225654760342330317057616, 7.45021289498554912174980419510, 8.468772761594242766495781029739, 8.828004100374299851941654892946, 9.855490631365725808039136213883, 10.70525758672027089757299013829