Properties

Label 2-520-1.1-c1-0-6
Degree $2$
Conductor $520$
Sign $-1$
Analytic cond. $4.15222$
Root an. cond. $2.03769$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3.41·3-s + 5-s − 2·7-s + 8.65·9-s + 4.24·11-s − 13-s − 3.41·15-s − 4.82·17-s − 8.24·19-s + 6.82·21-s + 5.07·23-s + 25-s − 19.3·27-s − 9.65·29-s − 1.41·31-s − 14.4·33-s − 2·35-s − 1.17·37-s + 3.41·39-s − 0.828·41-s − 1.75·43-s + 8.65·45-s + 2·47-s − 3·49-s + 16.4·51-s − 3.17·53-s + 4.24·55-s + ⋯
L(s)  = 1  − 1.97·3-s + 0.447·5-s − 0.755·7-s + 2.88·9-s + 1.27·11-s − 0.277·13-s − 0.881·15-s − 1.17·17-s − 1.89·19-s + 1.49·21-s + 1.05·23-s + 0.200·25-s − 3.71·27-s − 1.79·29-s − 0.254·31-s − 2.52·33-s − 0.338·35-s − 0.192·37-s + 0.546·39-s − 0.129·41-s − 0.267·43-s + 1.29·45-s + 0.291·47-s − 0.428·49-s + 2.30·51-s − 0.435·53-s + 0.572·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 520 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 520 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(520\)    =    \(2^{3} \cdot 5 \cdot 13\)
Sign: $-1$
Analytic conductor: \(4.15222\)
Root analytic conductor: \(2.03769\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 520,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 - T \)
13 \( 1 + T \)
good3 \( 1 + 3.41T + 3T^{2} \)
7 \( 1 + 2T + 7T^{2} \)
11 \( 1 - 4.24T + 11T^{2} \)
17 \( 1 + 4.82T + 17T^{2} \)
19 \( 1 + 8.24T + 19T^{2} \)
23 \( 1 - 5.07T + 23T^{2} \)
29 \( 1 + 9.65T + 29T^{2} \)
31 \( 1 + 1.41T + 31T^{2} \)
37 \( 1 + 1.17T + 37T^{2} \)
41 \( 1 + 0.828T + 41T^{2} \)
43 \( 1 + 1.75T + 43T^{2} \)
47 \( 1 - 2T + 47T^{2} \)
53 \( 1 + 3.17T + 53T^{2} \)
59 \( 1 + 5.41T + 59T^{2} \)
61 \( 1 + 7.31T + 61T^{2} \)
67 \( 1 - 0.828T + 67T^{2} \)
71 \( 1 + 9.89T + 71T^{2} \)
73 \( 1 - 6.82T + 73T^{2} \)
79 \( 1 - 6.82T + 79T^{2} \)
83 \( 1 + 2T + 83T^{2} \)
89 \( 1 + 10T + 89T^{2} \)
97 \( 1 - 0.343T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.76892515625415663970430565533, −9.678936856600928625873228805734, −9.012565739669430604925793247991, −7.14545383899240331564458120240, −6.51325824083471360453124345990, −6.00587786061643390440460691024, −4.83753720367894891817375253391, −3.96423568809408738269943956599, −1.74096157805781498233793892100, 0, 1.74096157805781498233793892100, 3.96423568809408738269943956599, 4.83753720367894891817375253391, 6.00587786061643390440460691024, 6.51325824083471360453124345990, 7.14545383899240331564458120240, 9.012565739669430604925793247991, 9.678936856600928625873228805734, 10.76892515625415663970430565533

Graph of the $Z$-function along the critical line